Background: The tau protein plays a central role in Alzheimer’s disease (AD) and there is huge interest in measuring tau in blood and CSF. Methods: We developed a set of immunoassays to measure tau in specimens from humans diagnosed based on current best clinical and CSF biomarker criteria. Results: In CSF, mid-region-detected and N-terminal-detected tau predominated and rose in disease. In plasma, an N-terminal assay (NT1) detected elevated levels of tau in AD and AD-mild cognitive impairment (MCI). Plasma NT1 measurements separated controls from AD-MCI (area under the curve, AUC=0.88) and AD (AUC=0.96) in a Discovery Cohort; and in a Validation Cohort (with AUCs=0.79 and 0.75, respectively). Conclusions: The forms of tau in CSF and plasma are distinct, but in each specimen type the levels of certain fragments are increased in AD. Measurement of plasma NT1 tau should be aggressively pursued as a potential blood-based screening test for AD/AD-MCI.
Phage display antibody libraries are a rich resource for discovery of potential therapeutic antibodies. Single-chain variable fragment (scFv) libraries are the most common format due to the efficient display of scFv by phage particles and the ease by which soluble scFv antibodies can be expressed for high-throughput screening. Typically, a cascade of screening and triaging activities are performed, beginning with the assessment of large numbers of E. coli-expressed scFv, and progressing through additional assays with individual reformatting of the most promising scFv to full-length IgG. However, use of high-throughput screening of scFv for the discovery of full-length IgG is not ideal because of the differences between these molecules. Furthermore, the reformatting step represents a bottle neck in the process because each antibody has to be handled individually to preserve the unique VH and VL pairing. These problems could be resolved if populations of scFv could be reformatted to full-length IgG before screening without disrupting the variable region pairing. Here, we describe a novel strategy that allows the reformatting of diverse populations of scFv from phage selections to full-length IgG in a batch format. The reformatting process maintains the diversity and variable region pairing with high fidelity, and the resulted IgG pool enables high-throughput expression of IgG in mammalian cells and cell-based functional screening. The improved process led to the discovery of potent candidates that are comparable or better than those obtained by traditional methods. This strategy should also be readily applicable to Fab-based phage libraries. Our approach, Screening in Product Format (SiPF), represents a substantial improvement in the field of antibody discovery using phage display.
-linked immunosorbent assay; IgG, immunoglobulin G; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel; VH, variable region of immunoglobulin heavy chain; VL, variable region of immunoglobulin light chainImmunization of mice or rats with a "non-self" protein is a commonly used method to obtain monoclonal antibodies, and relies on the immune system's ability to recognize the immunogen as foreign. Immunization of an antigen with 100% identity to the endogenous protein, however, will not elicit a robust immune response. To develop antibodies to mouse proteins, we focused on the potential for breaking such immune tolerance by genetically fusing two independent T-cell epitope-containing sequences (from tetanus toxin (TT) and diphtheria toxin fragment A (DTA)) to a mouse protein, mouse ST2 (mST2). Wild-type CD1 mice were immunized with three mST2 tagged proteins (Fc, TT and DTA) and the specific serum response was determined. Only in mice immunized with the T-cell epitope-containing antigens were specific mST2 serum responses detected; hybridomas generated from these mice secreted highly sequence-diverse IgGs that were capable of binding mST2 and inhibiting the interaction of mST2 with its ligand, mouse interleukin (IL)-33 (mIL-33). Of the hundreds of antibodies profiled, we identified five potent antibodies that were able to inhibit IL-33 induced IL-6 release in a mast cell assay; notably one such antibody was sufficiently potent to suppress IL-5 release and eosinophilia infiltration in an Alternaria alternata challenge mouse model of asthma. This study demonstrated, for the first time, that T-cell epitope-containing tags have the ability to break tolerance in wild-type mice to 100% conserved proteins, and it provides a compelling argument for the broader use of this approach to generate antibodies against any mouse protein or conserved ortholog.
Guanylin, a peptide implicated in regulation of intestinal fluid secretion, is expressed in the mucosa, but the exact cellular origin remains controversial. In a new transgenic mouse model fluorescent reporter protein expression driven by the proguanylin promoter was observed throughout the small intestine and colon in goblet and Paneth(-like) cells and, except in duodenum, in mature enterocytes. In Ussing chamber experiments employing both human and mouse intestinal tissue, proguanylin was released predominantly in the luminal direction. Measurements of proguanylin expression and secretion in cell lines and organoids indicated that secretion is largely constitutive and requires ER to Golgi transport but was not acutely regulated by salt or other stimuli. Using a newly-developed proguanylin assay, we found plasma levels to be raised in humans after total gastrectomy or intestinal transplantation, but largely unresponsive to nutrient ingestion. By LC-MS/MS we identified processed forms in tissue and luminal extracts, but in plasma we only detected full-length proguanylin. Our transgenic approach provides information about the cellular origins of proguanylin, complementing previous immunohistochemical and in-situ hybridisation results. The identification of processed forms of proguanylin in the intestinal lumen but not in plasma supports the notion that the primary site of action is the gut itself.
Preclinical studies of PD-L1 and CTLA-4 blockade have relied heavily on mouse syngeneic tumor models with intact immune systems, which facilitate dissection of immunosuppressive mechanisms in the tumor microenvironment. Commercially developed monoclonal antibodies (mAbs) targeting human PD-L1, PD-1, and CTLA-4 may not demonstrate cross-reactive binding to their mouse orthologs, and surrogate anti-mouse antibodies are often used in their place to inhibit these immune checkpoints. In each case, multiple choices exist for surrogate antibodies, which differ with respect to species of origin, affinity, and effector function. To develop relevant murine surrogate antibodies for the anti-human PD-L1 mAb durvalumab and the anti-human CTLA-4 mAb tremelimumab, rat/mouse chimeric or fully murine mAbs engineered for reduced effector function were developed and compared with durvalumab and tremelimumab. Characterization included determination of target affinity, in vivo effector function, pharmacokinetic profile, and anti-tumor efficacy in mouse syngeneic tumor models. Results showed that anti–PD-L1 and anti–CTLA-4 murine surrogates with pharmacologic properties similar to those of durvalumab and tremelimumab demonstrated anti-tumor activity in a subset of commonly used mouse syngeneic tumor models. This activity was not entirely dependent on antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis effector function, or regulatory T-cell depletion, as antibodies engineered to lack these features showed activity in models historically sensitive to checkpoint inhibition, albeit at a significantly lower level than antibodies with intact effector function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.