To optimize the in vivo folding of proteins, we linked protein stability to antibiotic resistance, thereby forcing bacteria to effectively fold and stabilize proteins. When we challenged Escherichia coli to stabilize a very unstable periplasmic protein, it massively overproduced a periplasmic protein called Spy, which increases the steady-state levels of a set of unstable protein mutants up to 700-fold. In vitro studies demonstrate that the Spy protein is an effective ATP-independent chaperone that suppresses protein aggregation and aids protein refolding. Our strategy opens up new routes for chaperone discovery and the custom tailoring of the in vivo folding environment. Spy forms thin, apparently flexible cradle-shaped dimers. Spy is unlike the structure of any previously solved chaperone, making it the prototypical member of a new class of small chaperones that facilitate protein refolding in the absence of energy cofactors.
Mammalian cells show a compartmented metabolism. Getting access to subcellular metabolite pools is of high interest to understand the cells' metabolomic state. Therefore a protocol is developed and applied for monitoring compartment-specific metabolite and nucleotide pool sizes in Chinese hamster ovary (CHO) cells. The approach consists of a subtracting filtering method separating cytosolic components from physically intact mitochondrial compartments. The internal standards glucose-6-phosphate and cis-aconitate were chosen to quantify cytosolic secession and mitochondrial membrane integrity. Extracts of related fractions were studied by liquid chromatography-isotope dilution mass spectrometry for the absolute quantification of a subset of glycolytic and tricarboxylic acid cycle intermediates together with the adenylate nucleotides ATP, ADP and AMP. The application of the protocol revealed highly dynamic changes in the related pool sizes as a function of distinct cultivation periods of IgG1 producing CHO cells. Mitochondrial and cytosolic pool dynamics were in agreement with anticipated metabolite pools of independent studies. The analysis of adenosine phosphate levels unraveled significantly higher ATP levels in the cytosol leading to the hypothesis that mitochondria predominantly serve for fueling ATP into the cytosol where it is tightly controlled at physiological adenylate energy charges about 0.9.
A variety of approaches has been published to enhance specific productivity (qp) of recombinant Chinese hamster ovary (CHO) cells. Changes in culture conditions, e. g. temperature shifts, sodium butyrate treatment and hyperosmolality, were shown to improve qp . To contribute to a better understanding of the correlation between hyperosmolality and enhanced qp , we analyzed cellular kinetics and intracellular adenine nucleotide pools during osmotic shift periods. Known phenotypes like increased formation rates for lactate and product (anti-IL-8 antibody; qlactate, qp) as well as increased cell specific uptake rate for glucose (qglucose ) were found--besides inhibition of cell growth and G1-arrest occurred during batch cultivations with osmotic shift. The analysis of intracellular AXP pools revealed enlarged ATP amounts for cells as response to hyperosmolality while energy charges remained unchanged. Enhanced ATP-pools coincided with severely increased ATP formation rates (qATP ) which outweighed by far the putative requirements attributed to regulatory volume increase. Therefore elevated qATP mirrored an increased cellular demand for energy while experiencing hyperosmotic shift.
Biopharmaceuticals are predominantly produced by Chinese hamster ovary (CHO) cells cultivated in fed-batch mode. Hyperosmotic culture conditions (≥ 350 mOsmol kg(∑1) ) resulting from feeding of nutrients may enhance specific product formation rates (qp ). As an improved ATP supply was anticipated to enhance qp this study focused on the identification of suitable miRNA/mRNA targets to increase ATP levels. Therefor next generation sequencing and a compartment specific metabolomics approach were applied to analyze the response of an antibody (mAB) producing CHO cell line upon osmotic shift (280 → 430 mOsmol kg(-1) ). Hyperosmotic culture conditions caused a ∼2.6-fold increase of specific ATP formation rates together with a ∼1.7-fold rise in cytosolic and mitochondrial ATP-pools, thus showing increased ATP supply. mRNA expression analysis identified several genes encoding glycosylated proteins with strictly tissue related function. In addition, hyperosmotic culture conditions induced an upregulation of miR-132-3p, miR-132-5p, miR-182, miR-183, miR-194, miR-215-3p, miR-215-5p which have all been related to cell cycle arrest/proliferation in cancer studies. In relation to a previous independent CHO study miR-183 may be the most promising target to enhance qp by stable overexpression. Furthermore, deletion of genes with presumably dispensable function in suspension growing CHO cells may enhance mAB formation by increased ATP levels.
Market demands for monoclonal antibodies (mAbs) are steadily increasing worldwide. As a result, production processes using Chinese hamster ovary cells (CHO) are in the focus of ongoing intensification studies for maximizing cell-specific and volumetric productivities. This includes the optimization of animal-derived component free (ADCF) cultivation media as part of good cell culture practice. Dipeptides are known to improve CHO culture performance. However, little or even conflicting assumptions exist about their putative import and functionality inside the cells. A set of well-known performance boosters and new dipeptide prospects was evaluated. The present study revealed that dipeptides are indeed imported in the cells, where they are decomposed to the amino acids building blocks. Subsequently, they are metabolized or, unexpectedly, secreted to the medium. Monoclonal antibody production boosting additives like l-alanine-l-glutamine (AQ) or glycyl-l-glutamine (GQ) can be assigned to fast or slow dipeptide uptake, respectively, thus pinpointing to the need to study dipeptide kinetics and to adjust their feeding individually for optimizing mAb production.Electronic supplementary materialThe online version of this article (doi:10.1186/s13568-016-0221-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.