Atmospheric deposition of nitrogen (N) influences forest demographics and carbon (C) uptake through multiple mechanisms that vary among tree species. Prior studies have estimated the effects of atmospheric N deposition on temperate forests by leveraging forest inventory measurements across regional gradients in deposition. However, in the United States (U.S.), these previous studies were limited in the number of species and the spatial scale of analysis, and did not include sulfur (S) deposition as a potential covariate. Here, we present a comprehensive analysis of how tree growth and survival for 71 species vary with N and S deposition across the conterminous U.S. Our analysis of 1,423,455 trees from forest plots inventoried between 2000 and 2016 reveals that the growth and/or survival of the vast majority of species in the analysis (n = 66, or 93%) were significantly affected by atmospheric deposition. Species co-occurred across the conterminous U.S. that had decreasing and increasing relationships between growth (or survival) and N deposition, with just over half of species responding negatively in either growth or survival to increased N deposition somewhere in their range (42 out of 71). Averaged across species and conterminous U.S., however, we found that an increase in deposition above current rates of N deposition would coincide with a small net increase in tree growth (1.7% per Δ kg N ha-1 yr-1), and a small net decrease in tree survival (-0.22% per Δ kg N ha-1 yr-1), with substantial regional and among-species variation. Adding S as a predictor improved the overall model performance for 70% of the species in the analysis. Our findings have potential to help inform ecosystem management and air pollution policy across the conterminous U.S., and suggest that N and S deposition have likely altered forest demographics in the U.S.
Sustainability challenges for nature and people are complex and interconnected, such that effective solutions require approaches and a common theory of change that bridge disparate disciplines and sectors. Causal chains offer promising approaches to achieving an integrated understanding of how actions affect ecosystems, the goods and services they provide, and ultimately, human well-being. Although causal chains and their variants are common tools across disciplines, their use remains highly inconsistent, limiting their ability to support and create a shared evidence base for joint actions. In this article, we present the foundational concepts and guidance of causal chains linking disciplines and sectors that do not often intersect to elucidate the effects of actions on ecosystems and society. We further discuss considerations for establishing and implementing causal chains, including nonlinearity, trade-offs and synergies, heterogeneity, scale, and confounding factors. Finally, we highlight the science, practice, and policy implications of causal chains to address real-world linked human–nature challenges.
Abstract. Anthropogenic stressors such as climate change, increased fire frequency, and pollution drive shifts in ecosystem function and resilience. Scientists generally rely on biological indicators of these stressors to signal that ecosystem conditions have been altered. However, these biological indicators are not always capable of being directly related to ecosystem components that provide benefits to humans and/or can be used to evaluate the cost-benefit of a change in health of the component (ecosystem services). Therefore, we developed the STEPS (Stressor-Ecological Production function-final ecosystem Services) Framework to link changes in a biological indicator of a stressor to final ecosystem services. The STEPS Framework produces "chains" of ecological components that explore the breadth of impacts resulting from the change in a stressor. Chains are comprised of the biological indicator, the ecological production function (EPF, which uses ecological components to link the biological indicator to a final ecosystem service), and the user group who directly uses, appreciates, or values the component. The framework uses a qualitative score (high, medium, low) to describe the strength of science (SOS) for the relationship between each component in the EPF. We tested the STEPS Framework within a workshop setting using the exceedance of critical loads of air pollution as a model stressor and the Final Ecosystem Goods and Services Classification System (FEGS-CS) to describe final ecosystem services. We identified chains for four modes of ecological response to deposition: aquatic acidification, aquatic eutrophication, terrestrial acidification, and terrestrial eutrophication. The workshop participants identified 183 unique EPFs linking a change in a biological indicator to a FEGS; when accounting for the multiple beneficiaries, we ended with 1104 chains. The SOS scores were effective in identifying chains with the highest confidence ranking as well as those where more research is needed. The STEPS Framework could be adapted to any system in which a stressor is modifying a biological component. The results of the analysis can be used by the social science community to apply valuation measures to multiple or selected chains, providing a comprehensive analysis of the effects of anthropogenic stressors on measures of human well-being.
A method was developed to characterize fish and invertebrate responses to flow alteration in the state of North Carolina. This method involved using 80th percentile linear quantile regressions to relate six flow metrics to the diversity of riffle‐run fish and benthic Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness. All twelve flow‐biology relationships were found to be significant, with both benthos and fish showing negative responses to ecodeficits and reductions in flow. The responses of benthic richness to reduced flows were consistent and generally greater than that of fish diversity. However, the riffle‐run fish guild showed the greatest reductions in diversity in response to summer ecodeficits. The directional consistency and differential seasonal sensitivities of fish and invertebrates to reductions in flow highlight the need to consider seasonality when managing flows. In addition, all relationships were linear, and therefore do not provide clear thresholds to support ecological flow determinations and flow prescriptions to prevent the degradation of fish and invertebrate communities in North Carolina rivers and streams. A method of setting ecological flows based on the magnitude of change in biological condition that is acceptable to society is explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.