Understanding spatial distributions, synergies, and tradeoffs of multiple ecosystem services (benefits people derive from ecosystems) remains challenging. We analyzed the supply of 10 ecosystem services for 2006 across a large urbanizing agricultural watershed in the Upper Midwest of the United States, and asked the following: (i) Where are areas of high and low supply of individual ecosystem services, and are these areas spatially concordant across services? (ii) Where on the landscape are the strongest tradeoffs and synergies among ecosystem services located? (iii) For ecosystem service pairs that experience tradeoffs, what distinguishes locations that are "win-win" exceptions from other locations? Spatial patterns of high supply for multiple ecosystem services often were not coincident; locations where six or more services were produced at high levels (upper 20th percentile) occupied only 3.3% of the landscape. Most relationships among ecosystem services were synergies, but tradeoffs occurred between crop production and water quality. Ecosystem services related to water quality and quantity separated into three different groups, indicating that management to sustain freshwater services along with other ecosystem services will not be simple. Despite overall tradeoffs between crop production and water quality, some locations were positive for both, suggesting that tradeoffs are not inevitable everywhere and might be ameliorated in some locations. Overall, we found that different areas of the landscape supplied different suites of ecosystem services, and their lack of spatial concordance suggests the importance of managing over large areas to sustain multiple ecosystem services.hydrologic services | landscape heterogeneity | sustainability | Wisconsin | Yahara Watershed R esearch on ecosystem services-the benefits people obtain from nature-has grown rapidly (1-3), yet understanding of the interactions among multiple ecosystem services across heterogeneous landscapes remains limited (3-5). Ecosystem services may interact in complex ways (6, 7). Synergies arise when multiple services are enhanced simultaneously (4), and tradeoffs occur when the provision of one service is reduced as a consequence of increased use of another (7). Managing spatial relationships among diverse ecosystem services may help to strengthen landscape resilience, but interactions among services and their spatial patterns are not well understood (4). Ecosystem service supply has been mapped at various scales (8-12), and spatial concordance among services has been examined to identify "winwin" opportunities for ecosystem service conservation (13)(14)(15)(16)(17)(18)(19). However, few studies have dealt simultaneously with tradeoffs and synergies among a suite of ecosystem services (20)(21)(22), and none have done so using spatially explicit analyses. Thus, little is known about where tradeoffs and synergies among ecosystem services are most pronounced. Such information could identify areas of disproportionate importance in a landscape, such as...
Maximizing agricultural production on existing cropland is one pillar of meeting future global food security needs. To close crop yield gaps, it is critical to understand how climate extremes such as drought impact yield. Here, we use gridded, daily meteorological data and county-level annual yield data to quantify meteorological drought sensitivity of US maize and soybean production from 1958 to 2007. Meteorological drought negatively affects crop yield over most US crop-producing areas, and yield is most sensitive to short-term (1-3 month) droughts during critical development periods from July to August. While meteorological drought is associated with 13% of overall yield variability, substantial spatial variability in drought effects and sensitivity exists, with central and southeastern US becoming increasingly sensitive to drought over time. Our study illustrates fine-scale spatiotemporal patterns of drought effects, highlighting where variability in crop production is most strongly associated with drought, and suggests that management strategies that buffer against short-term water stress may be most effective at sustaining long-term crop productivity.
Macrosystems ecology is an effort to understand ecological processes and interactions at the broadest spatial scales and has potential to help solve globally important social and ecological challenges. It is important to understand the intellectual legacies underpinning macrosystems ecology: How the subdiscipline fits within, builds upon, differs from and extends previous theories. We trace the rise of macrosystems ecology with respect to preceding theories and present a new hypothesis that integrates the multiple components of macrosystems theory. The spatio-temporal anthropogenic rescaling (STAR) hypothesis suggests that human activities are altering the scales of ecological processes, resulting in interactions at novel space-time scale combinations that are diverse and predictable. We articulate four predictions about how human actions are "expanding", "shrinking", "speeding up" and "slowing down" ecological processes and interactions, and thereby generating new scaling relationships for ecological patterns and processes. We provide examples of these rescaling processes and describe ecological consequences across terrestrial, freshwater and marine ecosystems. Rescaling depends in part on characteristics including connectivity, stability and heterogeneity. Our STAR hypothesis challenges traditional assumptions about how the spatial and temporal scales of processes and interactions operate in different types of ecosystems and provides a lens through which to understand macrosystem-scale environmental change.
Rising inequalities and accelerating global environmental change pose two of the most pressing challenges of the twenty-first century. To explore how these phenomena are linked, we apply a social-ecological systems perspective and review the literature to identify six different types of interactions (or “pathways”) between inequality and the biosphere. We find that most of the research so far has only considered one-directional effects of inequality on the biosphere, or vice versa. However, given the potential for complex dynamics between socioeconomic and environmental factors within social-ecological systems, we highlight examples from the literature that illustrate the importance of cross-scale interactions and feedback loops between inequality and the biosphere. This review draws on diverse disciplines to advance a systemic understanding of the linkages between inequality and the biosphere, specifically recognizing cross-scale feedbacks and the multidimensional nature of inequality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.