The paired-homeodomain transcription factor PAX4 is expressed in the developing pancreas and along with PAX6 is required for normal development of the endocrine cells. In the absence of PAX4, the numbers of insulin-producing beta cells and somatostatin-producing delta cells are drastically reduced, while the numbers of glucagon-producing alpha cells are increased. To gain insight into PAX4 function, we cloned a full-length Pax4 cDNA from a beta-cell cDNA library and identified a bipartite consensus DNA binding sequence consisting of a homeodomain binding site separated from a paired domain binding site by 15 nucleotides. The paired half of this consensus sequence has similarities to the PAX6 paired domain consensus binding site, and the two proteins bind to common sequences in several islet genes, although with different relative affinities. When expressed in an alpha-cell line, PAX4 represses transcription through the glucagon or insulin promoters or through an isolated PAX4 binding site. This repression is not simply due to competition with the PAX6 transcriptional activator for the same binding site, since PAX4 fused to the unrelated yeast GAL4 DNA binding domain also represses transcription through the GAL4 binding site in the alpha-cell line and to a lesser degree in beta-cell lines and NIH 3T3 cells. Repressor activity maps to more than one domain within the molecule, although the homeodomain and carboxyl terminus give the strongest repression. PAX4 transcriptional regulation apparently plays a role only early in islet development, since Pax4 mRNA as determined by reverse transcriptase PCR peaks at embryonic day 13.5 in the fetal mouse pancreas and is undetectable in adult islets. In summary, PAX4 can function as a transcriptional repressor and is expressed early in pancreatic development, which may allow it to suppress alpha-cell differentiation and permit beta-cell differentiation.
Differentiation of early gut endoderm cells into the endocrine cells forming the pancreatic islets of Langerhans depends on a cascade of gene activation events controlled by transcription factors including the basic helix-loop-helix (bHLH) proteins. To delineate this cascade, we began by establishing the position of neurogenin3, a bHLH factor found in the pancreas during fetal development. We detect neurogenin3 immunoreactivity transiently in scattered ductal cells in the fetal mouse pancreas, peaking at embryonic day 15.5. Although not detected in cells expressing islet hormones or the islet transcription factors Isl1, Brn4, Pax6 or PDX1, neurogenin3 is detected along with early islet differentiation factors Nkx6.1 and Nkx2.2, establishing that it is expressed in immature cells in the islet lineage. Analysis of transcription factor-deficient mice demonstrates that neurogenin3 expression is not dependent on neuroD1/BETA2, Mash1, Nkx2.2, Nkx6.1, or Pax6. Furthermore, early expression of neurogenin3 under control of the Pdx1 promoter is alone sufficient to drive early and ectopic differentiation of islet cells, a capability shared by the pancreatic bHLH factor, neuroD1/BETA2, but not by the muscle bHLH factor, MyoD. However, the islet cells produced in these transgenic experiments are overwhelmingly (alpha) cells, suggesting that factors other than the bHLH factors are required to deviate from a default * cell fate. These data support a model in which neurogenin3 acts upstream of other islet differentiation factors, initiating the differentiation of endocrine cells, but switching off prior to final differentiation. The ability to uniquely identify islet cell precursors by neurogenin3 expression allows us to determine the position of other islet transcription factors in the differentiation cascade and to propose a map for the islet cell differentiation pathway.
Most insulin-producing beta-cells in the fetal mouse pancreas arise during the secondary transition, a wave of differentiation starting at embryonic day 13. Here, we show that disruption of homeobox gene Nkx6.1 in mice leads to loss of beta-cell precursors and blocks beta-cell neogenesis specifically during the secondary transition. In contrast, islet development in Nkx6. 1/Nkx2.2 double mutant embryos is identical to Nkx2.2 single mutant islet development: beta-cell precursors survive but fail to differentiate into beta-cells throughout development. Together, these experiments reveal two independently controlled pathways for beta-cell differentiation, and place Nkx6.1 downstream of Nkx2.2 in the major pathway of beta-cell differentiation.
Antitrust challenges to hospital mergers have been largely unsuccessful in recent years. As a result, there has been substantial consolidation in the hospital industry. The resulting loss of competition often leads to dire consequences for consumers in terms of increased prices and decreased services. It is therefore important to examine the reasons why merger challenges frequently fail in court. Upon closer scrutiny, four types of court analytical errors emerge: First, courts can misconstrue the relevant market by misunderstanding the component product or geographic markets. Second, courts can underestimate the merged entity's market power. Third, courts can fail to include relevant nonprice competition in the analysis of the anticompetitive effects of the merger. Finally, courts can overestimate the value of mitigating factors, such as nonprofit status or the existence of a community commitment to keep prices low after a merger. The judiciary will continue to play a substantial role in the evaluation of hospital mergers. Therefore, this Comment argues that it is essential for courts to take a stricter approach to merger analysis in order to protect consumers from the harms associated with the absence of competition.I. The main federal antitrust provision that applies to hospital mergers is section 7 of the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.