Soils are essential components of terrestrial ecosystems that experience strong pollution pressure. Microplastic contamination of soils is being increasingly documented, with potential consequences for soil biodiversity and function. Notwithstanding, data on effects of such contaminants on fundamental properties potentially impacting soil biota are lacking. The present study explores the potential of microplastics to disturb vital relationships between soil and water, as well as its consequences for soil structure and microbial function. During a 5-weeks garden experiment we exposed a loamy sand soil to environmentally relevant nominal concentrations (up to 2%) of four common microplastic types (polyacrylic fibers, polyamide beads, polyester fibers, and polyethylene fragments). Then, we measured bulk density, water holding capacity, hydraulic conductivity, soil aggregation, and microbial activity. Microplastics affected the bulk density, water holding capacity, and the functional relationship between the microbial activity and water stable aggregates. The effects are underestimated if idiosyncrasies of particle type and concentrations are neglected, suggesting that purely qualitative environmental microplastic data might be of limited value for the assessment of effects in soil. If extended to other soils and plastic types, the processes unravelled here suggest that microplastics are relevant long-term anthropogenic stressors and drivers of global change in terrestrial ecosystems.
The quantum chemical design of new molecular materials for non-linear applications requires a fundamental understanding of electronic structure and properties. Targeted synthesis of candidates greatly reduces the costs and timescales of an empirical search and this is aided by prior calculation of excited state energies, energy relaxation and transfer rates, molecule-environment interactions and excited state chemistry.Essentially, the problems encountered in the routine application of standard quantum chemical methods are caused by the large size of the molecules of interest. This necessitates either the design of ultra-fast computers or numerical methods which facilitate the application of ‘exact’ techniques or the development of less resource intensive approximate methods with proven accuracy.We shall outline the theories used in the calculation of optical properties and review their computational implementation. Calculations on annellated tetraazaporphyrazines will be presented in illustration.
Measurements on the reverse saturable absorption (RSA) properties of some polyene dyes are presented. For a series of linear dyes, a correlation is observed between the symmetry of a molecule and its ability to exhibit RSA. To our knowledge, this is the first structure-RSA relationship discovered to date.Certain of these materials have been studied with semi-empirical quantum chemical techniques and the observed structure-RSA relationship is rationalised in terms of the calculated electronic structures. In this paper, we report primarily on some studies we have carried out on the linear dye systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.