Abstract-It is a staple development practice to log system behavior. Numerous powerful model-inference algorithms have been proposed to aid developers in log analysis and system understanding. Unfortunately, existing algorithms are typically declared procedurally, making them difficult to understand, extend, and compare. This paper presents InvariMint, an approach to specify modelinference algorithms declaratively. We applied the InvariMint declarative approach to two model-inference algorithms. The evaluation results illustrate that InvariMint (1) leads to new fundamental insights and better understanding of existing algorithms, (2) simplifies creation of new algorithms, including hybrids that combine or extend existing algorithms, and (3) makes it easy to compare and contrast previously published algorithms. InvariMint's declarative approach can outperform procedural implementations. For example, on a log of 50,000 events, InvariMint's declarative implementation of the kTails algorithm completes in 12 seconds, while a procedural implementation completes in 18 minutes. We also found that InvariMint's declarative version of the Synoptic algorithm can be over 170 times faster than the procedural implementation.
Abstract-Logging system behavior is a staple development practice. Numerous powerful model inference algorithms have been proposed to aid developers in log analysis and system understanding. Unfortunately, existing algorithms are difficult to understand, extend, and compare. This paper presents InvariMint, an approach to specify model inference algorithms declaratively. We apply InvariMint to two model inference algorithms and present evaluation results to illustrate that InvariMint (1) leads to new fundamental insights and better understanding of existing algorithms, (2) simplifies creation of new algorithms, including hybrids that extend existing algorithms, and (3) makes it easy to compare and contrast previously published algorithms. Finally, InvariMint's declarative approach can outperform equivalent procedural algorithms.
In a distributed system, the hosts execute concurrently, generating asynchronous logs that are challenging to comprehend. We present two tools: ShiVector to transparently add vector timestamps to distributed system logs, and ShiViz to help developers understand distributed system logs by visualizing them as space-time diagrams. ShiVector is the first tool to offer automated vector timestamp instrumentation without modifying source code. The vector-timestamped logs capture partial ordering information, useful for analysis and comprehension. ShiViz space-time diagrams are simple to understand and interactive -the user can explore the log through the visualization to understand complex system behavior. We applied ShiVector and ShiViz to two systems and found that they aid developers in understanding and debugging.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.