Silicon microchips with immobilized antibodies were used to develop microfluidic enzyme immunoassays using chemiluminescence detection and horseradish peroxidase (HRP) as the enzyme label. Polyclonal anti-atrazine antibodies were coupled to the silicon microchip surface with an overall dimension of 13.1 x 3.2 mm, comprising 42 porous flow channels of 235-microm depth and 25-microm width. Different immobilization protocols based on covalent or noncovalent modification of the silica surface with 3-aminopropyltriethoxysilane (APTES) or 3-glycidoxypropyltrimethoxysilane (GOPS), linear polyethylenimine (LPEI, MW 750,000), or branched polyethylenimine (BPEI, MW 25,000), followed by adsorption or covalent attachment of the antibody, were evaluated to reach the best reusability, stability, and sensitivity of the microfluidic enzyme immunoassay (microFEIA). Adsorption of antibodies on a LPEI-modified silica surface and covalent attachment to physically adsorbed BPEI lead to unstable antibody coatings. Covalent coupling of antibodies via glutaraldehyde (GA) to three different functionalized silica surfaces (APTES-GA, LPEI-GA, and GOPS-BPEI-GA) resulted in antibody coatings that could be completely regenerated using 0.4 M glycine/HCl, pH 2.2. The buffer composition was shown to have a dramatic effect on the assay stability, where the commonly used phosphate buffer saline was proved to be the least suitable choice. The best long-term stability was obtained for the LPEI-GA surface with no loss of antibody activity during one month. The detection limits in the microFEIA for the three different immuno surfaces were 45, 3.8, and 0.80 ng/L (209, 17.7, and 3.7 pM) for APTES-GA, LPEI-GA, and GOPS-BPEI-GA, respectively.
One of the major challenges in producing large scale engineered tissue is the lack of ability to create large highly perfused scaffolds in which cells can grow at a high cell density and viability. Here, we explore 3D printed polyvinyl alcohol (PVA) as a sacrificial mould in a polymer casting process. The PVA mould network defines the channels and is dissolved after curing the polymer casted around it. The printing parameters determined the PVA filament density in the sacrificial structure and this density resulted in different stiffness of the corresponding elastomer replica. It was possible to achieve 80% porosity corresponding to about 150 cm(2)/cm(3) surface to volume ratio. The process is easily scalable as demonstrated by fabricating a 75 cm(3) scaffold with about 16,000 interconnected channels (about 1m(2) surface area) and with a channel to channel distance of only 78 μm. To our knowledge this is the largest scaffold ever to be produced with such small feature sizes and with so many structured channels. The fabricated scaffolds were applied for in-vitro culturing of hepatocytes over a 12-day culture period. Smaller scaffolds (6×4 mm) were tested for cell culturing and could support homogeneous cell growth throughout the scaffold. Presumably, the diffusion of oxygen and nutrient throughout the channel network is rapid enough to support cell growth. In conclusion, the described process is scalable, compatible with cell culture, rapid, and inexpensive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.