BackgroundLong‐term continuous cardiac monitoring would aid in the early diagnosis and management of atrial fibrillation (AF). This study examined the accuracy of a novel approach for AF detection using photo‐plethysmography signals measured from a wrist‐based wearable device.Methods and Results
ECG and contemporaneous pulse data were collected from 2 cohorts of AF patients: AF patients (n=20) undergoing electrical cardioversion (ECV) and AF patients (n=40) that were prescribed for 24 hours ECG Holter in outpatient settings (HOL). Photo‐plethysmography and acceleration data were collected at the wrist and processed to determine the inter‐pulse interval and discard inter‐pulse intervals in presence of motion artifacts. A Markov model was deployed to assess the probability of AF given irregular pattern in inter‐pulse interval sequences. The AF detection algorithm was evaluated against clinical rhythm annotations of AF based on ECG interpretation. Photo‐plethysmography recordings from apparently healthy volunteers (n=120) were used to establish the false positive AF detection rate of the algorithm. A total of 42 and 855 hours (AF: 21 and 323 hours) of photo‐plethysmography data were recorded in the ECV and HOL cohorts, respectively. AF was detected with >96% accuracy (ECV, sensitivity=97%; HOL, sensitivity=93%; both with specificity=100%). Because of motion artifacts, the algorithm did not provide AF classification for 44±16% of the monitoring period in the HOL group. In healthy controls, the algorithm demonstrated a <0.2% false positive AF detection rate.ConclusionsA novel AF detection algorithm using pulse data from a wrist‐wearable device can accurately discriminate rhythm irregularities caused by AF from normal rhythm.
Automatically extracted template prototypes from the acceleration signal may be used to enhance accuracy and generalization properties of statistical-learning classifiers.
Obstructive sleep apnea syndrome (OSAS) is a sleep disorder that affects a large part of the population and the development of algorithms using cardiovascular features for OSAS monitoring has been an extensively researched topic in the last two decades. Several studies regarding automatic apneic event classification using ECG derived features are based on the public Apnea-ECG database available on PhysioNet. Although this database is an excellent starting point for apnea topic investigations, in our study we show that algorithms for apneic-epochs classification that are successfully trained on this database (sensitivity>85%, false detection rate<20%) perform poorly (sensitivity<55%, false detection rate>40%) in other databases which include patients with a broader spectrum of apneic events and sleep disorders. The reduced performance can be related to the complexity of breathing events, the increased number of non-breathing related sleep events, and the presence of non-OSAS sleep pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.