The Pulfrich phenomenon, originally described in normal observers, is a treatable disorder of the perception of movement in depth in cases of unilateral or asymmetric optic neuropathy. Treatment is highly bespoke and factors influencing treatment response and failure remain unclear. We assessed 25 adults with suspected Pulfrich phenomenon due to a range of conditions in two tertiary referral centres. Monocularly tinted spectacles were successful in reducing symptoms of the Pulfrich phenomenon under daylight conditions in nine subjects, eight of whom had optic neuritis. These spectacles were not effective at night and in patients with visual field defects due to ischaemic optic neuropathy, glaucoma, optic disc drusen or severe peripapillary retinal nerve fibre loss on optical coherence tomography.
BackgroundThe visual system could be included in the diagnostic criteria for multiple sclerosis (MS) to demonstrate dissemination in space (DIS) and dissemination in time (DIT).ObjectiveTo investigate the diagnostic value of retinal asymmetry in MS.MethodsA prospective, longitudinal study in individuals with MS (n=151) and healthy controls (n=27). Optical coherence tomography (OCT) was performed at 0, 2 and 4 years. Macular ganglion cell and inner plexiform layer (mGCIPL) thickness was determined as well as measures for retinal asymmetry: the inter-eye percentage difference (IEPD) and inter-eye absolute difference (IEAD). Receiver operator characteristics curves were plotted and the area under the curve (AUC) was calculated for group comparisons of the mGCIPL, IEPD, IEAD and atrophy rates.ResultsThe diagnostic accuracy of both the IEPD and IEAD for differentiating bilateral and unilateral MS optic neuritis was high and stable over time (AUCs 0.88–0.93). The IEPD slightly outperformed the IEAD. Atrophy rates showed low discriminatory abilities for differentiating MS from controls (AUC 0.49–0.58).ConclusionThe inter-eye differences of the mGCIPL have value for demonstration of DIS but in individuals with longstanding MS not for DIT. This may be considered as a test to detect DIS in future diagnostic criteria. Validation in a large prospective study in people presenting with symptoms suggestive of MS is required.
Two observations made 29 years apart are the cornerstones of this review on the contributions of Dr Gordon T. Plant to understanding pathology affecting the optic nerve. The first observation laid the anatomical basis in 1990 for the interpretation of optical coherence tomography (OCT) findings in 2009. Retinal OCT offers clinicians detailed in vivo structural imaging of individual retinal layers. This has led to novel observations which were impossible to make using ophthalmoscopy. The technique also helps to re-introduce the anatomically grounded concept of retinotopy to clinical practise. This review employs illustrations of the anatomical basis for retinotopy through detailed translational histological studies and multimodal brain-eye imaging studies. The paths of the prelaminar and postlaminar axons forming the optic nerve and their postsynaptic path from the dorsal lateral geniculate nucleus to the primary visual cortex in humans are described. With the mapped neuroanatomy in mind we use OCT-MRI pairings to discuss the patterns of neurodegeneration in eye and brain that are a consequence of the hard wired retinotopy: anterograde and retrograde axonal degeneration which can, within the visual system, propagate trans-synaptically. The technical advances of OCT and MRI for the first time enable us to trace axonal degeneration through the entire visual system at spectacular resolution. In conclusion, the neuroanatomical insights provided by the combination of OCT and MRI allows us to separate incidental findings from sinister pathology and provides new opportunities to tailor and monitor novel neuroprotective strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.