We present the results of our system for SemEval-2020 Task 1 that exploits a commonly used lexical semantic change detection model based on Skip-Gram with Negative Sampling. Our system focuses on Vector Initialization (VI) alignment, compares VI to the currently top-ranking models for Subtask 2 and demonstrates that these can be outperformed if we optimize VI dimensionality. We demonstrate that differences in performance can largely be attributed to model-specific sources of noise, and we reveal a strong relationship between dimensionality and frequency-induced noise in VI alignment. Our results suggest that lexical semantic change models integrating vector space alignment should pay more attention to the role of the dimensionality parameter.
Lexical semantic change detection is a new and innovative research field. The optimal fine-tuning of models including pre-and postprocessing is largely unclear. We optimize existing models by (i) pre-training on large corpora and refining on diachronic target corpora tackling the notorious small data problem, and (ii) applying post-processing transformations that have been shown to improve performance on synchronic tasks. Our results provide a guide for the application and optimization of lexical semantic change detection models across various learning scenarios. * Authors contributed equally, and their ordering was determined randomly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.