We address fixed satellite broadcast reception with the goal of decreasing the aperture of the receiving antenna. The front-end antenna size is commonly determined by the presence of interference from adjacent satellites. A small antenna aperture leads to interference from neighboring satellites utilizing the same frequency bands. We propose a reception system with multiple input elements and with subsequent joint detection of desired and interfering signals that provides reliable communication in the presence of multiple interfering signals. An iterative least squares technique is adopted combining spatial and temporal processing and achieving robustness against pointing errors. Simulation results show how the proposed joint spatial and temporal adapted mechanism outperforms the simple combination of existing techniques under interference overloaded conditions. Also, we demonstrate how to accurately synchronize the signals as part of the detection procedure. The technique is evaluated in a realistic simulation study representing the conditions encountered in a DVB-S2 broadcast scenario.Index Terms-Satellite broadcast reception, adjacent satellite interference, interference cancellation, joint spatial and temporal processing, interference overloaded system.
The current broadband coverage area requisites and the expected user demand is satisfied by the state of the art satellite industry by using multiple spot beams of high throughput satellites with fixed multi-beam pattern and footprint planning. However, in recent years, new mobile broadband users with dynamic traffic demand are requesting for services in remote geographical locations such as air (aeroplanes) and water (ships). Furthermore, the expected demand varies with time and geographical location of the users. Hence, a practical approach to meet such heterogeneous demand is to plan adaptive beams to the satellites equipped with beamforming capabilities. In this paper, we study the state of the art fixed multi-beam pattern and footprint plan and show its drawbacks to support the non-uniformly distributed user terminals and varying traffic demands. To end this, we propose an adaptive multi-beam pattern and footprint plan where we design spot beams with flexible size and position based on the spatial clustering of the users in order to increase the flexibility of the high throughput satellite system. Numerical simulations demonstrate the high system performance of the proposed methodology.
Deploying high throughput satellite systems in Ka band to accommodate the ever increasing demand for high data rates hits a spectrum barrier. Cognitive spectrum utilization of the allocated frequency bands to other services is a potential solution. Designing a cognitive zone around incumbent broadcasting satellite service (BSS) feeder links beyond which the cognitive fixed satellite service (FSS) terminals can freely utilize the same frequency band is considered in this paper. In addition, we show that there is a rain rate called rain wall, above which cognitive downlink communications becomes infeasible.
Abstract-Herein, we study the spectral coexistence of Geostationary (GEO) Fixed Satellite Services (FSS) downlink and Broadcasting Satellite Services (BSS) feeder links in the Ka-band (17.3 − 18.1 GHz) which is primarily allocated for BSS feeder links. Firstly, a novel cognitive spectrum exploitation framework is proposed in order to utilize the available band efficiently. Subsequently, based on the interference analysis carried out between these systems, two cognitive approaches, namely Carrier Allocation (CA) and Beamforming (BF), are investigated under the considered framework assuming the availability of an accurate Radio Environment Map (REM). The employed techniques allow the flexibility of using additional shared carriers for the FSS downlink system along with the already available exclusive carriers (19.7 − 20.2 GHz), thus increasing the overall system throughput. It is shown that a significant improvement in the per beam throughput as well as in the beam availability can be achieved by applying CA and BF approaches in the considered scenario.
In this paper we demonstrate end-to-end precoded multiuser multiple-input singleoutput communications over a live GEO satellite link. Precoded communications enable full frequency reuse schemes in satellite communications to achieve broader service availability and higher spectrum efficiency than with the conventional four-color and two-color reuse approaches. In this scope, we develop a novel over-the-air test-bed for end-to-end precoding validations. We were able to demonstrate precoded communications over an actual geostationary orbit multi-beam satellite using the DVB-S2X standard-compliant state-of-the-art gateway and user terminals. The developed system is capable of fully end-to-end real-time communications over a satellite link and demonstrates novel channel measurements and channel compensation techniques for differential frequency and phase tracking. It is shown, that by successfully canceling inter-user interference in the actual satellite link, the precoding improves the received SINR and increases the total system goodput in aggressive full frequency reuse scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.