Plant root development is informed by numerous edaphic cues. Phosphate (Pi) availability impacts the root system architecture by adjusting meristem activity. However, the sensory mechanisms monitoring external Pi status are elusive. Two functionally interacting Arabidopsis genes, LPR1 (ferroxidase) and PDR2 (P5-type ATPase), are key players in root Pi sensing, which is modified by iron (Fe) availability. We show that the LPR1-PDR2 module facilitates, upon Pi limitation, cell-specific apoplastic Fe and callose deposition in the meristem and elongation zone of primary roots. Expression of cell-wall-targeted LPR1 determines the sites of Fe accumulation as well as callose production, which interferes with symplastic communication in the stem cell niche, as demonstrated by impaired SHORT-ROOT movement. Antagonistic interactions of Pi and Fe availability control primary root growth via meristem-specific callose formation, likely triggered by LPR1-dependent redox signaling. Our results link callose-regulated cell-to-cell signaling in root meristems to the perception of an abiotic cue.
Environmental cues profoundly modulate cell proliferation and cell elongation to inform and direct plant growth and development. External phosphate (Pi) limitation inhibits primary root growth in many plant species. However, the underlying Pi sensory mechanisms are unknown. Here we genetically uncouple two Pi sensing pathways in the root apex of Arabidopsis thaliana. First, the rapid inhibition of cell elongation in the transition zone is controlled by transcription factor STOP1, by its direct target, ALMT1, encoding a malate channel, and by ferroxidase LPR1, which together mediate Fe and peroxidase-dependent cell wall stiffening. Second, during the subsequent slow inhibition of cell proliferation in the apical meristem, which is mediated by LPR1-dependent, but largely STOP1–ALMT1-independent, Fe and callose accumulate in the stem cell niche, leading to meristem reduction. Our work uncovers STOP1 and ALMT1 as a signalling pathway of low Pi availability and exuded malate as an unexpected apoplastic inhibitor of root cell wall expansion.
We have determined the X-ray structure of rat kinesin head and neck domains. The folding of the core motor domain resembles that of human kinesin reported recently [Kull, F. J., et al. (1996) Nature 380, 550-554]. Novel features of the structure include the N-terminal region, folded as a beta-strand, and the C-terminal transition from the motor to the rod domain, folded as two beta-strands plus an alpha-helix. This helix is the beginning of kinesin's neck responsible for dimerization of the motor complex and for force transduction. Although the folding of the motor domain core is similar to that of a domain of myosin (an actin-dependent motor), the position and angle of kinesin's neck are very different from those of myosin's stalk, suggesting that the two motors have different mechanisms of force transduction. The N- and C-terminal ends of the core motor, thought to be responsible for the directionality of the motors [Case, R. B., et al. (1997) Cell 90, 959-966], take the form of beta-strands attached to the central beta-sheet of the structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.