The fundamental impact of the precessing vortex core (PVC) as a dominant coherent flow structure in the flow field of swirl-stabilized gas turbine combustors has still not been investigated in depth. In order to do so, the PVC needs to be actively controlled to be able to set its parameters independently to any other of the combustion system. In this work, open-loop actuation is applied in the mixing section between the swirler and the generic combustion chamber of a nonreacting swirling jet setup to investigate the receptivity of the PVC with regard to its lock-in behavior at different streamwise positions. The mean flow in the mixing section as well as in the combustion chamber is measured by stereoscopic particle image velocimetry (SPIV), and the PVC is extracted from the snapshots using proper orthogonal decomposition (POD). The lock-in experiments reveal the axial position in the mixing section that is most suitable for actuation. Furthermore, a global linear stability analysis (LSA) is conducted to determine the adjoint mode of the PVC which reveals the regions of highest receptivity to periodic actuation based on mean flow input only. This theoretical receptivity model is compared with the experimentally obtained receptivity data, and the applicability of the adjoint-based model for the prediction of optimal actuator designs is discussed.
The Precessing Vortex Core (PVC) is a coherent structure that can arise in swirling jets from a global instability. In this work, the PVC is investigated under highly turbulent conditions. The goal is to characterize the receptivity of the PVC to active flow control, both theoretically and experimentally. Based on stereoscopic particle image velocimetry and surface pressure measurements, the experimental studies are facilitated by Fourier decomposition and proper orthogonal decomposition. The frequency and the mode shape of the PVC are extracted and a very good agreement with the theoretical prediction by global linear stability analysis (LSA) is found. By employing an adjoint LSA, it is found that the PVC is particularly receptive inside the duct upstream of the swirling jet. Open-loop zero net mass flux actuation is applied at different axial positions inside the duct with the goal of frequency synchronization of the PVC. The actuation is shown to have the strongest effect close to the exit of the duct. There, frequency synchronization is reached primarily through direct mode-to-mode interaction. Applying the actuation farther upstream, synchronization is only achieved by a modification of the mean flow that manipulates the swirl number. These experimental observations match qualitatively well with the theoretical receptivity derived from adjoint LSA. Although the process of synchronization is very complex, it is concluded that adjoint LSA based on mean field theory sufficiently predicts regions of high and low receptivity. Furthermore, the adjoint framework promises to be a valuable tool for finding ideal locations for flow control applications.Key words: Authors should not enter keywords on the manuscript, as these must be chosen by the author during the online submission process and will then be added during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfmkeywords.pdf for the full list) †
In this work we employ mean field stability theory (MFST) to predict the onset of the precessing vortex core (PVC) in the draft tube of Francis turbines. MFST is based on the linear stability analysis of the mean field of turbulent flows. Recent work shows that MFST very accurately predicts the formation of coherent structures in turbulent shear flows, such as the PVC. MFST may further reveal the flow regions that are most susceptible to flow actuation to suppress the PVC, which is of great practical relevance. In this work, MFST is accompanied by a data-driven approach to predict the linear growth rate of the PVC based on pointwise wall pressure measurements. The method is based on statistical evaluation of the probability density function of the PVC amplitude at limit cycle. It makes use of the intense noise induced by the background turbulence, which is expected to be a major driver of hydrodynamic instabilities. The empirical and analytic results are compared to phase-locked LDV measurements conducted inside the draft tube at various operating conditions, to assess the quantitative accuracy of the approach. The methodologies outlined in this work will be of relevance for future design of hydro turbines to run stable over a wide range of operating conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.