Monitoring of the network performance in highspeed Internet infrastructure is a challenging task, as the requirements for the given quality level are service-dependent. Backbone QoS monitoring and analysis in Multi-hop Networks requires therefore knowledge about types of applications forming current network traffic. To overcome the drawbacks of existing methods for traffic classification, usage of C5.0 Machine Learning Algorithm (MLA) was proposed. On the basis of statistical traffic information received from volunteers and C5.0 algorithm we constructed a boosted classifier, which was shown to have ability to distinguish between 7 different applications in test set of 76,632-1,622,710 unknown cases with average accuracy of 99.3-99.9 %. This high accuracy was achieved by using high quality training data collected by our system, a unique set of parameters used for both training and classification, an algorithm for recognizing flow direction and the C5.0 itself. Classified applications include Skype, FTP, torrent, web browser traffic, web radio, interactive gaming and SSH. We performed subsequent tries using different sets of parameters and both training and classification options. This paper shows how we collected accurate traffic data, presents arguments used in classification process, introduces the C5.0 classifier and its options, and finally evaluates and compares the obtained results.
During the last decade significant scientific efforts have been invested in the development of methods that could provide efficient and effective botnet detection. As a result, an array of detection methods based on diverse technical principles and targeting various aspects of botnet phenomena have been defined. As botnets rely on the Internet for both communicating with the attacker as well as for implementing different attack campaigns, network traffic analysis is one of the main means of identifying their existence. In addition to relying on traffic analysis for botnet detection, many contemporary approaches use machine learning techniques for identifying malicious traffic. This paper presents a survey of contemporary botnet detection methods that rely on machine learning for identifying botnet network traffic. The paper provides a comprehensive overview on the existing scientific work thus contributing to the better understanding of capabilities, limitations and opportunities of using machine learning for identifying botnet traffic. Furthermore, the paper outlines possibilities for the future development of machine learning-based botnet detection systems.
Increasingly public bodies and organizations are publishing Open Data for citizens to improve their quality of life and solving public problems. But having Open Data available is not enough. Public engagement is also important for successful Open Data initiatives. There is an increasing demand for strategies to actively involve the public exploiting Open Data, where not only the citizens but also school pupils and young people are able to explore, understand and extract useful information from the data, grasp the meaning of the information, and to visually represent findings. In this research paper, we investigate how we can equip our younger generation with the essential future skills using Open Data as part of their learning activities in public schools. We present the results of a survey among Danish school teachers and pupils. The survey focuses on how we can introduce Open Data visualizations in schools, and what are the possible benefits and challenges for pupils and teachers to use Open Data in their everyday teaching environment. We briefly review Copenhagen city's Open Data and existing open source software suitable for visualization, to study which open source software pupils can easily adapt to visualize Open Data and which data-sets teachers can relate to their teaching themes. Our study shows that introducing Open Data visualizations in schools make everyday teaching interesting and help improving pupils learning skills and that to actively use Open Data visualizations in schools, teachers and pupils need to boost their digital skills.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.