Monitoring of the network performance in highspeed Internet infrastructure is a challenging task, as the requirements for the given quality level are service-dependent. Backbone QoS monitoring and analysis in Multi-hop Networks requires therefore knowledge about types of applications forming current network traffic. To overcome the drawbacks of existing methods for traffic classification, usage of C5.0 Machine Learning Algorithm (MLA) was proposed. On the basis of statistical traffic information received from volunteers and C5.0 algorithm we constructed a boosted classifier, which was shown to have ability to distinguish between 7 different applications in test set of 76,632-1,622,710 unknown cases with average accuracy of 99.3-99.9 %. This high accuracy was achieved by using high quality training data collected by our system, a unique set of parameters used for both training and classification, an algorithm for recognizing flow direction and the C5.0 itself. Classified applications include Skype, FTP, torrent, web browser traffic, web radio, interactive gaming and SSH. We performed subsequent tries using different sets of parameters and both training and classification options. This paper shows how we collected accurate traffic data, presents arguments used in classification process, introduces the C5.0 classifier and its options, and finally evaluates and compares the obtained results.
To overcome the drawbacks of existing methods for traffic classification (by ports, Deep Packet Inspection, statistical classification) a new system was developed, in which the data are collected from client machines. This paper presents design of the system, implementation, initial runs and obtained results. Furthermore, it proves that the system is feasible in terms of uptime and resource usage, assesses its performance and proposes future enhancements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.