Although biotherapeutics have vast potential for treating brain disorders, their use has been limited due to low exposure across the blood-brain barrier (BBB). We report that by manipulating the binding mode of an antibody fragment to the transferrin receptor (TfR), we have developed a Brain Shuttle module, which can be engineered into a standard therapeutic antibody for successful BBB transcytosis. Brain Shuttle version of an anti-Aβ antibody, which uses a monovalent binding mode to the TfR, increases β-Amyloid target engagement in a mouse model of Alzheimer's disease by 55-fold compared to the parent antibody. We provide in vitro and in vivo evidence that the monovalent binding mode facilitates transcellular transport, whereas a bivalent binding mode leads to lysosome sorting. Enhanced target engagement of the Brain Shuttle module translates into a significant improvement in amyloid reduction. These findings have major implications for the development of biologics-based treatment of brain disorders.
We have adapted an in vitro model of the human blood-brain barrier, the immortalized human cerebral microvascular endothelial cells (hCMEC/D3), to quantitatively measure protein transcytosis. After validating the receptor-mediated transport using transferrin, the system was used to measure transcytosis rates of antibodies directed against potential brain shuttle receptors. While an antibody to the insulin-like growth factor 1 receptor (IGF1R) was exclusively recycled to the apical compartment, the fate of antibodies to the transferrin receptor (TfR) was determined by their relative affinities at extracellular and endosomal pH. An antibody with reduced affinity at pH5.5 showed significant transcytosis, while pH-independent antibodies of comparable affinities at pH 7.4 remained associated with intracellular vesicular compartments and were finally targeted for degradation.
Tumor necrosis factor (TNF)-like cytokine 1A (TL1A)/TNF superfamily member 15 (TNFSF15) is a proinflammatory cytokine and TNFα superfamily member that is linked preclinically and clinically to inflammatory bowel disease (IBD). By homology and function, TNFα is its closest family member. In this study, we investigated the mechanism of TL1A-induced inflammation in CD4+ T cells and compared it with the TNFα pathway. We found that TL1A induces proinflammatory cytokines, including TNFα, from isolated human CD4+CD161+ T cells, whereas these cells were resistant to TNFα treatment. Anti-TNFα failed to block TL1A-induced cytokine production, indicating that the effects of TL1A are direct. Lastly, CD161 and TL1A expression were significantly and selectively increased in gut tissue biopsies, but not in the peripheral blood, from IBD patients. Thus, TLIA not only functions upstream of TNFα, driving its expression from CD161+ T cells, but is also independent of TNFα. These findings may have therapeutic IBD implications.
Receptors show promise for the transport of monoclonal antibodies (mAbs) across the blood-brain barrier. However, safety liabilities associated with peripheral receptor binding and Fc effector function have been reported. We present the Brain Shuttle-mAb (BS-mAb) technology, and we investigate the role of Fc effector function in vitro and in an Fcγ receptor (FcγR)-humanized mouse model. Strong first infusion reactions (FIRs) were observed for a conventional mAb against transferrin receptor (TfR) with a wild-type immunoglobulin G1 (IgG1) Fc. Fc effector-dead constructs completely eliminated all FIRs. Remarkably, no FIR was observed for the BS-mAb construct with a native IgG1 Fc function. Using various BS-mAb constructs, we show that TfR binding through the C-terminal BS module attenuates Fc-FcγR interactions, primarily because of steric hindrance. Nevertheless, BS-mAbs maintain effector function activity when binding their brain target. Thus, mAbs with full effector function can be transported in a stealth mode in the periphery while fully active when engaged with their brain target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.