This paper presents a new numerical technique for simulating two-dimensional wind turbine flow. The method, denoted as the 2D actuator surface technique, consists of a two-dimensional Navier–Stokes solver in which the pressure distribution is represented by body forces that are distributed along the chord of the airfoils. The distribution of body force is determined from a set of predefined functions that depend on angle of attack and airfoil shape. The predefined functions are curve fitted using pressure distributions obtained either from viscous-inviscid interactive codes or from full Navier–Stokes simulations. The actuator surface technique is evaluated by computing the two-dimensional flow past a NACA 0015 airfoil at a Reynolds number of 106 and an angle of attack of 10deg and by comparing the computed streamlines with the results from a traditional Reynolds-averaged Navier–Stokes computation. In the last part, the actuator surface technique is applied to compute the flow past a two-bladed vertical axis wind turbine equipped with NACA 0012 airfoils. Comparisons with experimental data show an encouraging performance of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.