This paper presents a new numerical technique for simulating two-dimensional wind turbine flow. The method, denoted as the 2D actuator surface technique, consists of a two-dimensional Navier–Stokes solver in which the pressure distribution is represented by body forces that are distributed along the chord of the airfoils. The distribution of body force is determined from a set of predefined functions that depend on angle of attack and airfoil shape. The predefined functions are curve fitted using pressure distributions obtained either from viscous-inviscid interactive codes or from full Navier–Stokes simulations. The actuator surface technique is evaluated by computing the two-dimensional flow past a NACA 0015 airfoil at a Reynolds number of 106 and an angle of attack of 10deg and by comparing the computed streamlines with the results from a traditional Reynolds-averaged Navier–Stokes computation. In the last part, the actuator surface technique is applied to compute the flow past a two-bladed vertical axis wind turbine equipped with NACA 0012 airfoils. Comparisons with experimental data show an encouraging performance of the method.
Cooperative brood care is diagnostic of animal societies. This is particularly true for the advanced social insects, and the honey bee is the best understood of the insect societies. A brood pheromone signaling the presence of larvae in a bee colony has been characterised and well studied, but here we explored whether honey bee larvae actively signal their food needs pheromonally to workers. We show that starving honey bee larvae signal to workers via increased production of the volatile pheromone E-β-ocimene. Analysis of volatile pheromones produced by food-deprived and fed larvae with gas chromatography-mass spectrometry showed that starving larvae produced more E-β-ocimene. Behavioural analyses showed that adding E-β-ocimene to empty cells increased the number of worker visits to those cells, and similarly adding E-β-ocimene to larvae increased worker visitation rate to the larvae. RNA-seq and qRT-PCR analysis identified 3 genes in the E-β-ocimene biosynthetic pathway that were upregulated in larvae following 30 minutes of starvation, and these genes also upregulated in 2-day old larvae compared to 4-day old larvae (2-day old larvae produce the most E-β-ocimene). This identifies a pheromonal mechanism by which brood can beg for food from workers to influence the allocation of resources within the colony.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.