The SH2 domain-containing tyrosine phosphatase SHP1 is known to play a crucial role in the regulation of hematopoiesis. It has been shown previously that SHP1 associates with the activated erythropoietin receptor (EPOR) and negatively regulates mitogenic signaling. To further elucidate the role of SHP1 in erythropoietin (EPO)-induced cellular responses we employed J2E erythroleukemic cells as a model for erythroid maturation and cytokine-triggered suppression of apoptosis. Our data indicate that overexpressed SHP1 inhibits both EPO-induced differentiation as well as prevention of apoptosis. The specific signaling pathways responsible are not unraveled so far. Therefore, we analyzed the involvement of SHP1 in two established EPO-stimulated pathways, the JAK/STAT and the MAP kinase cascades, by transient coexpression of reporter constructs containing binding sites for transcription factors targeted by these pathways and a SHP1 cDNA. Both pathways are inhibited by SHP1 as indicated by the lower induction of reporter gene activity. In conclusion, SHP1 regulates the transcriptional activity stimulated by the EPO-induced JAK/STAT and MAPK pathways and is involved in the signaling machinery responsible for erythroid differentiation and suppression of apoptosis.
Pregnancy is characterized by increased erythropoiesis within maternal and fetal compartments. The placenta has been shown to produce factors that stimulate erythropoiesis but convincing evidence for placental production of erythropoietin (EPO) is still lacking. Prolactin-like protein E (PLP-E) was recently found to stimulate expression of the adult beta major globin gene in mouse erythroleukemia cells. Here we demonstrate that PLP-E transiently expressed in COS-7 cells stimulates proliferation and erythroid differentiation of murine and human erythroid progenitor cell lines. Electrophoretic mobility shift assays were used to show the activation of STAT5 by PLP-E in the human erythroid cell line TF1. Furthermore, we compared the effects of PLP-E on murine myeloid FDCP1 cells which do not express EPO receptors (EPORs) with effects on cells genetically engineered to express functional EPORs. We provide evidence that PLP-E-dependent proliferation and STAT5 activation is independent of the expression of the EPOR. Taken together, these data suggest that PLP-E acts on specific receptors of erythroid-committed murine and human cells by the activation of intracellular signaling pathways promoting cell growth and differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.