Apart from its hematopoietic effect, erythropoietin (EPO) is known as pleiotropic cytokine with anti-inflammatory and antiapoptotic properties. Here, we evaluated for the first time the EPO-dependent regeneration capacity in an in vivo rat model of skeletal muscle trauma. A myoblast cell line was used to study the effect of EPO on serum deprivation-induced cell apoptosis in vitro. A crush injury was performed to the left soleus muscle in 80 rats treated with either EPO or saline. Muscle recovery was assessed by analysis of contraction capacities. Intravital microscopy, BrdU/laminin double immunohistochemistry and cleaved caspase-3 immunohistochemistry of muscle tissue on days 1, 7, 14, and 42 posttrauma served for assessment of local microcirculation, tissue integrity, and cell proliferation. Serum deprivation-induced myoblast apoptosis of 23.9 AE 1.5% was reduced by EPO to 17.2 AE 0.8%. Contraction force analysis in the EPO-treated animals revealed significantly improved muscle strength with 10-20% higher values of twitch and tetanic forces over the 42-day observation period. EPO-treated muscle tissue displayed improved functional capillary density as well as reduced leukocytic response and consecutively macromolecular leakage over day 14. Concomitantly, muscle histology showed significantly increased numbers of BrdU-positive satellite cells and interstitial cells as well as slightly lower counts of cleaved caspase-3-positive interstitial cells. EPO results in faster and better regeneration of skeletal muscle tissue after severe trauma and goes along with improved microcirculation. Thus, EPO, a compound established as clinically safe, may represent a promising therapeutic option to optimize the posttraumatic course of muscle tissue healing.
The immature erythroid J2E cell line proliferates and terminally differentiates following erythropoietin stimulation. In contrast, the mutant J2E-NR clone does not respond to erythropoietin by either proliferating or differentiating. Here we show that erythropoietin can act as a viability factor for both the J2E and J2E-NR lines, indicating that erythropoietin-initiated maturation is separable from the prevention of cell death. The inability of J2E-NR cells to mature in response to erythropoietin was not due to a defect in the erythropoietin receptor sequence, although surface receptor numbers were reduced. Both the receptor and Janus kinase 2 were phosphorylated after erythropoietin stimulation of J2E-NR cells. However, protein interactions with the erythropoietin receptor and Grb2 were restricted in the mutant cells. Subsequent investigation of several other signaling molecules exposed numerous alterations in J2E-NR cells; phosphorylation changes to phosphatidylinositol 3-kinase, phospholipase C␥, p120 GAP, and mitogen-activated protein kinases (p42 and p44) observed in erythropoietin-stimulated J2E cells were not seen in the J2E-NR line. These data indicate that some pathways activated during erythropoietin-induced differentiation may not be essential for the prevention of apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.