Ballistic devices that generate radial pressure waves are used for the treatment of different therapeutic indications. In order to assess the effectiveness of these devices and to interpret and transfer the results of clinical trials, it is important to know their acoustic output. In this paper, two ballistic devices and their reproducibility at different clinically relevant settings were investigated in the same in-vitro test setup. Pressure curves were measured in water at different intensity levels and pulse repetition rates. The sound field parameters (peak pressures, positive pulse intensity integral) were calculated from the pressure curves. Additionally, the surface velocity of the applicator was determined in air using a vibrometer. Both devices show a good pulse-to-pulse reproducibility. While the peak maximum pressure and the positive pulse intensity integral decrease only slightly (pmax up to 12%, PII+ up to 18.8%) comparing 1 Hz and 25 Hz for one device, they drop sharply (pmax up to 68.4%, PII+ up to 90.2%) for the other device comparing 1 Hz to 21 Hz. The same effect was observed in the vibrometer measurements. The results show that with increasing pulse repetition rate the stability of the parameters varies between different devices. Hence, all sound field parameters should be compared before transferring settings from one device to another.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.