The technology for localization of surgical tools with respect to the patient's reference coordinate system in three to six degrees of freedom is one of the key components in computer aided surgery. Several tracking methods are available, of which optical tracking is the most widespread in clinical use. Optical tracking technology has proven to be a reliable method for intra-operative position and orientation acquisition in many clinical applications; however, the accuracy of such localizers is still a topic of discussion. In this paper, the accuracy of three optical localizer systems, the NDI Polaris P4, the NDI Polaris Spectra (in active and passive mode) and the Stryker Navigation System II camera, is assessed and compared critically. Static tests revealed that only the Polaris P4 shows significant warm-up behavior, with a significant shift of accuracy being observed within 42 minutes of being switched on. Furthermore, the intrinsic localizer accuracy was determined for single markers as well as for tools using a volumetric measurement protocol on a coordinate measurement machine. To determine the relative distance error within the measurement volume, the Length Measurement Error (LME) was determined at 35 test lengths. As accuracy depends strongly on the marker configuration employed, the error to be expected in typical clinical setups was estimated in a simulation for different tool configurations. The two active localizer systems, the Stryker Navigation System II camera and the Polaris Spectra (active mode), showed the best results, with trueness values (mean +/- standard deviation) of 0.058 +/- 0.033 mm and 0.089 +/- 0.061 mm, respectively. The Polaris Spectra (passive mode) showed a trueness of 0.170 +/- 0.090 mm, and the Polaris P4 showed the lowest trueness at 0.272 +/- 0.394 mm with a higher number of outliers than for the other cameras. The simulation of the different tool configurations in a typical clinical setup revealed that the tracking error can be estimated to be 1.02 mm for the Polaris P4, 0.64 mm for the Polaris Spectra in passive mode, 0.33 mm for the Polaris Spectra in active mode, and 0.22 mm for the Stryker Navigation System II camera.
Objective Validation of medical image segmentation algorithms is an open question, considering variance of individual pathologies and the related clinical requirements for accuracy. In this paper, we propose a validation metric capable to distinguish between an over and under-segmentation and account for different clinical applications. Materials and methods In this paper, we propose a validation metric representing a tradeoff between sensitivity and specificity. The metric has an advantage of differentiating between an over or under-segmentation which is an important feature for validating large sets of segmentation results, as human inspection is exhausting and time consuming. Although it is oriented to the accuracy measurement it is also closely related to the robustness of a method. Results Features of the metrics are analyzed alongside their medical impact. A set of numerical simulations is performed in order to compare the proposed metric with standardly used discrepancy measures. The metric is illustrated with a clinical case study, presenting accuracy assessment of an algorithm for calvarial tumor segmentation, validated on six patients.
The success rate of extracorporeal shock wave therapy (ESWT) for fracture nonunions in human medicine (i.e. radiographic union at 6 months after ESWT) is only approximately 75%. Detailed knowledge regarding the underlying mechanisms that induce bio-calcification after ESWT is limited. We analyzed the biological response within mineralized tissue of a new invertebrate model organism, the zebra mussel Dreissena polymorpha, after exposure with extracorporeal shock waves (ESWs). Mussels were exposed to ESWs with positive energy density of 0.4 mJ/mm2 (A) or were sham exposed (B). Detection of newly calcified tissue was performed by exposing the mussels to fluorescent markers. Two weeks later, the A-mussels showed a higher mean fluorescence signal intensity within the shell zone than the B-mussels (P<0.05). Acoustic measurements revealed that the increased mean fluorescence signal intensity within the shell of the A-mussels was independent of the size and position of the focal point of the ESWs. These data demonstrate that induction of bio-calcification after ESWT may not be restricted to the region of direct energy transfer of ESWs into calcified tissue. The results of the present study are of relevance for better understanding of the molecular and cellular mechanisms that induce formation of new mineralized tissue after ESWT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.