both settings is that the feedback received from users (agents) is truthful. The peer prediction method introduced by Miller et al. [2005] is a prominent theoretical mechanism for the truthful elicitation of reports. However, a significant obstacle to its application is that it critically depends on the assumption of a common prior amongst both the agents and the mechanism. In this paper, we develop a peer prediction mechanism for settings where the agents hold subjective and private beliefs about the state of the world and the likelihood of a positive signal given a particular state. Our shadow peer prediction mechanism exploits temporal structure in order to elicit two reports, a belief report and then a signal report, and it provides strict incentives for truthful reporting as long as the effect an agent's signal has on her posterior belief is bounded away from zero. Alternatively, this technical requirement on beliefs can be dispensed with by a modification in which the second report is a belief report rather than a signal report.
Proper scoring rules can be used to incentivize a forecaster to truthfully report her private beliefs about the probabilities of future events and to evaluate the relative accuracy of forecasters. While standard scoring rules can score forecasts only once the associated events have been resolved, many applications would benefit from instant access to proper scores. In forecast aggregation, for example, it is known that using weighted averages, where more weight is put on more accurate forecasters, outperforms simple averaging of forecasts. We introduce proxy scoring rules, which generalize proper scoring rules and, given access to an appropriate proxy, allow for immediate scoring of probabilistic forecasts. In particular, we suggest a proxy-scoring generalization of the popular quadratic scoring rule, and characterize its incentive and accuracy evaluation properties theoretically. Moreover, we thoroughly evaluate it experimentally using data from a large real world geopolitical forecasting tournament, and show that it is competitive with proper scoring rules when the number of questions is small.
Minimal peer prediction mechanisms truthfully elicit private information (e.g., opinions or experiences) from rational agents without the requirement that ground truth is eventually revealed. In this article, we use a geometric perspective to prove that minimal peer prediction mechanisms are equivalent to power diagrams, a type of weighted Voronoi diagram. Using this characterization and results from computational geometry, we show that many of the mechanisms in the literature are unique up to affine transformations. We also show that classical peer prediction is “complete” in that every minimal mechanism can be written as a classical peer prediction mechanism for some scoring rule. Finally, we use our geometric characterization to develop a general method for constructing new truthful mechanisms, and we show how to optimize for the mechanisms’ effort incentives and robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.