We report here the response of a commercial ultra-low loss (ULL) single-mode (SM) pure silica core (PSC) fiber, the Vascade EX1000 fiber from Corning, associated with 0.16 dB/km losses at 1.55 µm to 40 keV X-rays at room temperature. Today, among all fiber types, the PSC or F-doped ones have been demonstrated to be the most tolerant to the radiation induced attenuation (RIA) phenomenon and are usually used to design radiation-hardened data links or fiber-based point or distributed sensors. The here investigated ULL-PSC showed, instead, surprisingly high RIA levels of ~3000 dB/km at 1310 nm and ~2000 dB/km at 1550 nm at a limited dose of 2 kGy(SiO2), exceeding the RIA measured in the P-doped SM fibers used for dosimetry for doses of ~500 Gy. Moreover, its RIA increased as a function of the dose with a saturation tendency at larger doses and quickly recovered after irradiation. Our study on the silica structure suggests that the very specific manufacturing process of the ULL-PSC fibers applied to reduce their intrinsic attenuation makes them highly vulnerable to radiations even at low doses. From the application point of view, this fiber cannot be used for data transfer or sensing in harsh environments, except as a very efficient radiation detector or beam monitor.
We investigated the nature, optical properties, and decay kinetics of point defects causing large transient attenuation increase observed in silica-based optical fibers exposed to short duration and high-dose rate x-ray pulses. The transient radiation-induced attenuation (RIA) spectra of pure-silica-core (PSC), Ge-doped, F-doped, and Ge + F-doped optical fibers (OFs) were acquired after the ionizing pulse in the spectral range of [∼0.8-∼3.2] eV (∼1500-∼380 nm), from a few ms to several minutes after the pulse, at both room temperature (RT) and liquid nitrogen temperature (LNT). Comparing the fiber behavior at both temperatures better highlights the thermally unstable point defects contribution to the RIA. The transient RIA origin and decay kinetics are discussed on the basis of already-known defects absorbing in the investigated spectral range. These measurements reveal the importance of intrinsic metastable defects such as self-trapped holes (STHs), not only for PSC and F-doped fibers but also for germanosilicate optical fibers as clearly evidenced by our LNT measurements. Furthermore, our results show that fluorine co-doping seems to decrease the RIA related to the strain-assisted STHs absorption bands in both types of optical fibers. Regarding Ge-doped glasses, besides a description of the defects responsible of the RIA, highlighting the STHs' role in their transient response, we provide a clear correlation between the GeX and GeY centers' kinetics. In conclusion, the presented results improve our understanding of the transient RIA origin in the ultraviolet and visible domains. The lack of knowledge about the defects causing the RIA in the near-infrared domain will require future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.