The role of heterotrimeric G-proteins in cAMP-dependent germination of conidia was investigated in the filamentous ascomycete Aspergillus nidulans. We demonstrate that the Ga-subunit GanB mediates a rapid and transient activation of cAMP synthesis in response to glucose during the early period of germination. Moreover, deletion of individual G-protein subunits resulted in defective trehalose mobilization and altered germination kinetics, indicating that GanB(a)-SfaD(b)-GpgA(g) constitutes a functional heterotrimer and controls cAMP/PKA signaling in response to glucose as well as conidial germination. Further genetic analyses suggest that GanB plays a primary role in cAMP/PKA signaling, whereas the SfaDGpgA (Gbg) heterodimer is crucial for proper activation of GanB signaling sensitized by glucose. In addition, the RGS protein RgsA is also involved in regulation of the cAMP/PKA pathway and germination via attenuation of GanB signaling. Genetic epistatic analyses led us to conclude that all controls exerted by GanB(a)-SfaD(b)-GpgA(g) on conidial germination are mediated through the cAMP/PKA pathway. Furthermore, GanB may function in sensing various carbon sources and subsequent activation of downstream signaling for germination.
The asexual spore is one of the most crucial factors contributing to the fecundity and fitness of filamentous fungi. Although the developmental activator FluG was shown to be necessary for activation of asexual sporulation (conidiation) and production of the carcinogenic mycotoxin sterigmatocystin (ST) in the model filamentous fungus Aspergillus nidulans, the molecular mechanisms underlying the developmental switch have remained elusive. In this study, we report that the FluG-mediated conidiation in A. nidulans occurs via derepression. Suppressor analyses of fluG led to the identification of the sfgA gene encoding a novel protein with the Gal4-type Zn(II) 2 Cys 6 binuclear cluster DNA-binding motif at the N terminus. Deletion (D) and 31 other loss-of-function sfgA mutations bypassed the need for fluG in conidiation and production of ST. Moreover, both DsfgA and DsfgA DfluG mutations resulted in identical phenotypes in growth, conidiation, and ST production, indicating that the primary role of FluG is to remove repressive effects imposed by SfgA. In accordance with the proposed regulatory role of SfgA, overexpression of sfgA inhibited conidiation and delayed/reduced expression of conidiation-and STspecific genes. Genetic analyses demonstrated that SfgA functions downstream of FluG but upstream of transcriptional activators (FlbD, FlbC, FlbB, and BrlA) necessary for normal conidiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.