We introduce the concept of interval-valued fuzzy congruences on a semigroup S and we obtain some important results: First, for any interval-valued fuzzy congruence R on a group G, the interval-valued congruence class R e is an interval-valued fuzzy normal subgroup of G. Second, for any interval-valued fuzzy congruence R on a groupoid S, we show that a binary operation * an S/R is well-defined and also we obtain some results related to additional conditions for S. Also we improve that for any two interval-valued fuzzy congruences R and Q on a semigroup S such that R ⊂ Q, there exists a unique semigroup homomorphism g : S/R → S/G.
Abstract. We introduce the concepts of interval-valued fuzzy complete inner-unitary subsemigroups and interval-valued fuzzy group congruences on a semigroup. And we investigate some of their properties. Also, we prove that there is a one to one correspondence between the interval-valued fuzzy complete inner-unitary subsemigroups and the interval-valued fuzzy group congruences on a regular semigroups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.