Abstract— The effects of gate‐bias stress, drain‐bias stress, and temperature on the electrical parameters of amorphous‐indium gallium zinc oxide (a‐IGZO) thin‐film transistors have been investigated. Results demonstrate that the devices suffer from threshold‐voltage instabilities that are recovered at room temperature without any treatments. It is suggested that these instabilities result from the bias field and temperature‐assisted charging and discharging phenomenon of preexisting traps at the near‐interface and the a‐IGZO channel region. The experimental results show that applying a drain‐bias stress obviously impacts the instability of a‐IGZO TFTs; however, the instability caused by drain bias is not caused by hot‐electron generation as in conventional MOSFETs. And the degradation trend is affected by thermally activated carriers at high temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.