SUMMARYA new method for modelling of arbitrary dynamic crack and shear band propagation is presented. We show that by a rearrangement of the extended finite element basis and the nodal degrees of freedom, the discontinuity can be described by superposed elements and phantom nodes. Cracks are treated by adding phantom nodes and superposing elements on the original mesh. Shear bands are treated by adding phantom degrees of freedom. The proposed method simplifies the treatment of element-byelement crack and shear band propagation in explicit methods. A quadrature method for 4-node quadrilaterals is proposed based on a single quadrature point and hourglass control. The proposed method provides consistent history variables because it does not use a subdomain integration scheme for the discontinuous integrand. Numerical examples for dynamic crack and shear band propagation are provided to demonstrate the effectiveness and robustness of the proposed method.
The performance of finite element methods for dynamic crack propagation in brittle materials is studied. Three methods are considered: the extended finite element method (XFEM), element deletion method and interelement crack method. The extended finite element method is a method for arbitrary crack propagation without remeshing. In element deletion methods, elements that meet a fracture criterion are deleted. In interelement crack methods, the crack is limited to element edges; the separation of these edges is governed by a cohesive law. We show that XFEM and interelement method show similar crack speeds and crack paths. However, both fail to predict a benchmark experiment without adjustment of the energy release rate. The element deletion method performs very poorly for the refinements studied, and is unable to predict crack branching.
SUMMARYNew methods for the analysis of failure by multiscale methods that invoke unit cells to obtain the subscale response are described. These methods, called multiscale aggregating discontinuities, are based on the concept of 'perforated' unit cells, which exclude subdomains that are unstable, i.e. exhibit loss of material stability. Using this concept, it is possible to compute an equivalent discontinuity at the coarser scale, including both the direction of the discontinuity and the magnitude of the jump. These variables are then passed to the coarse-scale model along with the stress in the unit cell. The discontinuity is injected at the coarser scale by the extended finite element method. Analysis of the procedure shows that the method is consistent in power and yields a bulk stress-strain response that is stable. Applications of this procedure to crack growth in heterogeneous materials are given.
SUMMARYA method for treating fluid-structure interaction of fracturing structures under impulsive loads is described. The coupling method is simple and does not require any modifications when the structure fails and allows fluid to flow through openings between crack surfaces. Both the fluid and the structure are treated by meshfree methods. For the structure, a Kirchhoff-Love shell theory is adopted and the cracks are treated by introducing either discrete (cracking particle method) or continuous (partition of unity-based method) discontinuities into the approximation. Coupling is realized by a master-slave scheme where the structure is slave to the fluid. The method is aimed at problems with high-pressure and low-velocity fluids, and is illustrated by the simulation of three problems involving fracturing cylindrical shells coupled with fluids.
SUMMARYA new method for modeling discrete cracks based on the extended finite element method is described. In the method, the growth of the actual crack is tracked and approximated with contiguous discrete crack segments that lie on finite element nodes and span only two adjacent elements. The method can deal with complicated fracture patterns because it needs no explicit representation of the topology of the actual crack path. A set of effective rules for injection of crack segments is presented so that fracture behavior beginning from arbitrary crack nucleations to macroscopic crack propagation is seamlessly modeled. The effectiveness of the method is demonstrated with several dynamic fracture problems that involve complicated crack patterns such as fragmentation and crack branching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.