Fucoxanthin is a carotenoid derived from brown algae. It is known to exhibit anticancer activity, including the promotion of apoptosis and cell cycle arrest in several tumors. However, it remains unclear whether fucoxanthin exhibits anticancer activity against mammary gland tumors. In this study, we evaluated fucoxanthin activity against canine mammary tumor cells (CMT-U27) and human umbilical vein endothelial cells (HUVECs) to investigate its effect on cell viability, migration, tube formation, and angiopoietin 2 (Ang2) expression. Our results showed that fucoxanthin induced apoptosis via caspase activation in CMT-U27 cells. In rat aortic ring assay, fucoxanthin suppressed endothelial cell sprouting. Furthermore, fucoxanthin inhibited tube formation and migration in HUVECs. The number of migrated cells was assessed using CMT-U27 cells. The results demonstrated that fucoxanthin exerted anti-angiogenic activity on HUVECs and CMT-U27 cells by promoting Ang2 expression. In conclusion, our results demonstrated that fucoxanthin induced tumor cell death and inhibited angiogenesis, suggesting that fucoxanthin could be considered as a promising therapeutic agent for canine mammary gland tumors.
Methyl gallate is a phenolic compound mainly found in medicinal plants. It has been reported to its anticancer activity in various tumors. In this study, we aimed to demonstrate the antitumor effect of methyl gallate in the melanoma mouse model and B16F10 cells. Our results showed that methyl gallate decreased cell viability and induced apoptosis by increasing the expression of cleaved caspase3 in B16F10 cells and prevented cell migration and tube formation in human umbilical vein endothelial cells. In B16F10 cell-inoculated mice, methyl gallate not only decreased tumor volume by 30% but also significantly reduced tumor vessel density and pericyte coverage. Moreover, methyl gallate diminished by close to 50% the expression of cytokeratin and LYVE-1 in mouse right inguinal lymph nodes, indicating that methyl gallate could suppress metastasis. In conclusion, this study suggests that methyl gallate inhibits tumor development by inducing apoptosis and blocking tumor angiogenesis and metastasis and might be considered a therapeutic agent for melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.