The terahertz (THz) band of the electromagnetic spectrum, with frequencies ranging from 300 GHz to 3 THz, has attracted wide interest in recent years owing to its potential applications in numerous areas. Significant progress has been made toward the development of devices capable of actively controlling terahertz waves; nonetheless, further advances in device functionality are necessary for employment of these devices in practical terahertz systems. Here, we demonstrate a low voltage, sharp switching terahertz modulator device based on metamaterials integrated with metal semiconductor metal (MSM) varactors, fabricated on an AlGaAs/InGaAs based heterostructure. By varying the applied voltage to the MSM-varactor located at the center of split ring resonator (SRR), the resonance frequency of the SRR-based metamaterial is altered. Upon varying the bias voltage from 0 V to 3 V, the resonance frequency exhibits a transition from 0.52 THz to 0.56 THz, resulting in a modulation depth of 45 percent with an insertion loss of 4.3 dB at 0.58 THz. This work demonstrates a new approach for realizing active terahertz devices with improved functionalities.
The low volumetric energy density of reduced graphene oxide (rGO)-based electrodes limits its application in commercial electrochemical energy storage devices that require high-performance energy storage capacities in small volumes. The volumetric energy density of rGO-based electrode materials is very low due to their low packing density. A supercapacitor with enhanced packing density and high volumetric energy density is fabricated using doped rGO scrolls (GFNSs) as the electrode material. The restacking of rGO sheets is successfully controlled through synthesizing the doped scroll structures while increasing the packing density. The fabricated cell exhibits an ultrahigh volumetric energy density of 49.66 Wh/L with excellent cycling stability (>10 000 cycles). This unique design strategy for the electrode material has significant potential for the future supercapacitors with high volumetric energy densities.
Highly luminescent graphene oxide (GO)-phosphor hybrid thin films with a maximum quantum yield of 9.6% were synthesized via a simple chemical method. An intense luminescence emission peak at 537 nm and a broad emission peak at 400 nm were observed from the GO-phosphor hybrid films. The maximum quantum yield of the emissions from the hybrid films was found to be 9.6%, which is 48 times higher than that of pristine GO films. The GO-phosphor hybrids were prepared via spin-coating and subsequent postannealing of the films, resulting in scrolling of the GO sheets. The resulting GO nanoscrolls exhibited a length of ∼2 μm with nanoscale interior cavities. Transmission electron microscopy and selected-area electron diffraction analyses revealed that the lattice structure of the tubular scrolls is similar to that of carbon nanotubes. While pristine GO films are p-type, in the GO-phosphor hybrids, the Fermi level shifted upward and fell between the HOMO-LUMO gap due to phosphor attachment via C-N bonding. The highly luminescent GO-phosphor hybrids will find important applications in graphene-based optoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.