Citrus greening or huanglongbing (HLB) is a devastating disease of citrus. HLB is associated with the phloem-limited fastidious prokaryotic alpha-proteobacterium 'Candidatus Liberibacter spp.' In this report, we used sweet orange (Citrus sinensis) leaf tissue infected with 'Ca. Liberibacter asiaticus' and compared this with healthy controls. Investigation of the host response was examined with citrus microarray hybridization based on 33,879 expressed sequence tag sequences from several citrus species and hybrids. The microarray analysis indicated that HLB infection significantly affected expression of 624 genes whose encoded proteins were categorized according to function. The categories included genes associated with sugar metabolism, plant defense, phytohormone, and cell wall metabolism, as well as 14 other gene categories. The anatomical analyses indicated that HLB bacterium infection caused phloem disruption, sucrose accumulation, and plugged sieve pores. The up-regulation of three key starch biosynthetic genes including ADP-glucose pyrophosphorylase, starch synthase, granule-bound starch synthase and starch debranching enzyme likely contributed to accumulation of starch in HLB-affected leaves. The HLB-associated phloem blockage resulted from the plugged sieve pores rather than the HLB bacterial aggregates since 'Ca. Liberibacter asiaticus' does not form aggregate in citrus. The up-regulation of pp2 gene is related to callose deposition to plug the sieve pores in HLB-affected plants.
The early detection of bladder cancer (BCa) is pivotal for successful patient treatment and management. Through genomic and proteomic studies, we have identified a number of bladder cancer-associated biomarkers that have potential clinical utility. In a case-control study, we examined voided urines from 127 subjects: 64 tumor-bearing subjects and 63 controls. The urine concentrations of the following proteins were assessed by enzyme-linked immunosorbent assay (ELISA); C-C motif chemokine 18 (CCL18), Plasminogen Activator Inhibitor 1 (PAI-1) and CD44. Data were compared to a commercial ELISA-based BCa detection assay (BTA-Trak©) and voided urinary cytology. We used analysis of the area under the curve of receiver operating characteristic curves to compare the ability of CCL18, PAI-1, CD44, and BTA to detect BCa in voided urine samples. Urinary concentrations of CCL18, PAI-1, and BTA were significantly elevated in subjects with BCa. CCL18 was the most accurate biomarker (AUC; 0.919; 95% confidence interval [CI], 0.8704-0.9674). Multivariate regression analysis highlighted CCL18 (OR; 18.31; 95% CI, 4.95-67.70, p<0.0001) and BTA (OR; 6.43; 95% CI, 1.86-22.21, p = 0.0033) as independent predictors of BCa in voided urine samples. The combination of CCL18, PAI-1 and CD44 improved the area under the curve to0.938. Preliminary results indicate that CCL18 was a highly accurate biomarker for BCa detection in this cohort. Monitoring CCL18 in voided urine samples has the potential to improve non-invasive tests for BCa diagnosis. Furthermore using the combination of CCL18, PAI-1 and CD44 may make the model more robust to errors to detect BCa over the individual biomarkers or BTA.
Purpose Accurate urine assays for bladder cancer detection would benefit patients and health care systems. Through extensive genomic and proteomic profiling of urine components we previously identified a panel of 8 biomarkers that can facilitate the detection of bladder cancer in voided urine samples. In this study we confirmed this diagnostic molecular signature in a diverse multicenter cohort. Materials and Methods We performed a case-control, phase II study in which we analyzed voided urine from 102 subjects with bladder cancer and 206 with varying urological disorders. The urine concentration of 8 biomarkers (IL-8, MMP and 10, PAI-1, VEGF, ANG, CA9 and APOE) was assessed by enzyme-linked immunosorbent assay. Diagnostic performance of the panel of tested biomarkers was evaluated using ROCs and descriptive statistical values, eg sensitivity and specificity. Results Seven of the 8 urine biomarkers were increased in subjects with bladder cancer relative to those without bladder cancer. The 7 biomarkers were assessed in a new model, which had an AUROC of 0.88 (95% CI 0.84–0.93), and 74% sensitivity and 90% specificity. In contrast, the sensitivity of voided urine cytology and the UroVysion® cytogenetic test in this cohort was 39% and 54%, respectively. Study limitations include analysis performed on banked urine samples and the lack of voided urine cytology and cytogenetic test data on controls. Conclusions The study provides further evidence that the reported panel of diagnostic biomarkers can reliably achieve the noninvasive detection of bladder cancer with higher sensitivity than currently available urine based assays.
BackgroundChemokines, including chemokine (C-X-C motif) ligand 1 (CXCL1), may regulate tumor epithelial-stromal interactions that facilitate tumor growth and invasion. Studies have linked CXCL1 expression to gastric, colon and skin cancers, but limited studies to date have described CXCL1 protein expression in human bladder cancer (BCa).MethodsCXCL1 protein expression was examined in 152 bladder tissue specimens (142 BCa) by immunohistochemical staining. The expression of CXCL1 was scored by assigning a combined score based on the proportion of cells staining and intensity of staining. CXCL1 expression patterns were correlated with clinicopathological features and follow-up data.ResultsCXCL1 protein expression was present in cancerous tissues, but was entirely absent in benign tissue. CXCL1 combined immunostaining score was significantly higher in high-grade tumors relative to low-grade tumors (p = 0.012). Similarly, CXCL1 combined immunostaining score was higher in high stage tumors (T2-T4) than in low stage tumors (Ta-T1) (p < 0.0001). An increase in the combined immunostaining score of CXCL1 was also associated with reduced disease-specific survival.ConclusionTo date, this is the largest study describing increased CXCL1 protein expression in more aggressive phenotypes in human BCa. Further studies are warranted to define the role CXCL1 plays in bladder carcinogenesis and progression.
BackgroundCurrent urine-based assays for bladder cancer (BCa) diagnosis lack accuracy, so the search for improved biomarkers continues. Through genomic and proteomic profiling of urine, we have identified a panel of biomarkers associated with the presence of BCa. In this study, we evaluated the utility of three of these biomarkers, interleukin 8 (IL-8), Matrix metallopeptidase 9 (MMP-9) and Syndecan in the diagnosis of BCa through urinalysis.MethodsVoided urines from 127 subjects, cancer subjects (n = 64), non-cancer subjects (n = 63) were analyzed. The protein concentrations of IL-8, MMP-9, and Syndecan were assessed by enzyme-linked immunosorbent assay (ELISA). Data were also compared to a commercial ELISA-based BCa detection assay (BTA-Trak©) and urinary cytology. We used the area under the curve of a receiver operating characteristic (AUROC) to compare the performance of each biomarker.ResultsUrinary protein concentrations of IL-8, MMP-9 and BTA were significantly elevated in BCa subjects. Of the experimental markers compared to BTA-Trak©, IL-8 was the most prominent marker (AUC; 0.79; 95% confidence interval [CI], 0.72-0.86). Multivariate regression analysis revealed that only IL-8 (OR; 1.51; 95% CI, 1.16-1.97, p = 0.002) was an independent factor for the detection of BCa.ConclusionsThese results suggest that the measurement of IL-8 in voided urinary samples may have utility for urine-based detection of BCa. These findings need to be confirmed in a larger, prospective cohort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.