Numerous methods for style transfer have been developed using unsupervised learning and gained impressive results. However, optimal style transfer cannot be conducted from a global fashion in certain style domains, mainly when a single target-style domain contains semantic objects that have their own distinct and unique styles, e.g., those objects in the anime-style domain. Previous methods are incongruent because the unsupervised learning can not provide the semantic mappings between the multistyle objects according to their unique styles. Thus, in this paper, we propose a pseudo-supervised learning framework for the semantic multi-style transfer (SMST), which consists of (i) a pseudo ground truth (pGT) generation phase and (ii) a SMST learning phase. In the pGT generation phase, multiple semantic objects of the photo images are separately transferred to the target-domain object styles in an object-oriented fashion. Then the transferred objects are composed back to an image, which is the pGT. In the SMST learning phase, a SMST network (SMSTnet) is trained with the pairs of the photo images and its respective pGT in a supervised manner. From this, our framework can provide the semantic mappings of multi-style objects. Moreover, to embrace the multi-styles of various objects into a single generator, we design the SMSTnet with channel attentions in conjunction with a discriminator dedicated to our pseudo-supervised learning. Our method has been applied and intensively tested for anime-style transfer learning. The experimental results demonstrate the effectiveness of our method and show its superiority compared to the state-of-theart methods.
This paper reviews the NTIRE 2020 Challenge on Non-Homogeneous Dehazing of images (restoration of rich details in hazy image). We focus on the proposed solutions and their results evaluated on NH-Haze, a novel dataset consisting of 55 pairs of real haze free and nonhomogeneous hazy images recorded outdoor. NH-Haze is the first realistic nonhomogeneous haze dataset that provides ground truth images. The nonhomogeneous haze has been produced using a professional haze generator that imitates the real conditions of haze scenes. 168 participants registered in the challenge and 27 teams competed in the final testing phase. The proposed solutions gauge the state-of-the-art in image dehazing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.