The objective of this study was to investigate the effect of increasing dietary supplementation of crushed sunflower seed (CSS) in the diet of dairy cows on the fatty acid (FA) composition of phospholipids and sphingomyelin in milk, and on mammary transcription of genes that are important for sphingomyelin de novo synthesis. Four groups of 6 cows received diets supplemented with CSS at 0% (control), or 5, 10, or 15% of dry matter for a 5-wk experimental period. Milk samples and mammary biopsies were collected at the end of the experiment. Phospholipid concentration in milk fat decreased linearly with CSS supplementation. Sphingomyelin concentration in milk fat was unaffected by CSS supplementation. Daily yield of phospholipids decreased linearly with CSS supplementation. Daily yield of sphingomyelin was not significantly affected. The CSS supplementation linearly increased the proportion of monounsaturated FA in milk phospholipids. The major isomer incorporated into phospholipids was C18:1 (n-9 cis), which showed a linear increase with CSS supplementation. The C22:0 proportion in sphingomyelin increased linearly with CSS supplementation and constituted between 15.2 to 25.4% of total FA in sphingomyelin. However, CSS supplementation linearly decreased C23:0 sphingomyelin. Mammary transcription of serine palmitoyl transferase, long chain subunit 1 and subunit 2, the rate-limiting enzymes in ceramide synthesis, showed a linear decrease with increasing CSS supplementation. In conclusion, the data showed that dietary supplementation of CSS linearly increased the proportion of unsaturated FA and monounsaturated FA in milk phospholipids with no effect on phospholipid concentration. In addition, CSS supplementation linearly decreased n-3 polyunsaturated fatty acid proportion in sphingomyelin. The results further showed that mammary transcription of important genes for sphingomyelin de novo synthesis is regulated by lipid supplementation.
The aim of this experiment was to investigate the effect of dietary supplementation of crushed high oleic sunflower seeds (HOS) and rumen-protected choline (RPC) on the fatty acid (FA) profile of phospholipids and sphingomyelin and mammary transcription of genes that are important for milk fat synthesis and de novo synthesis of sphingolipids. Twenty-four cows were divided into four groups that either received an unsupplemented diet (Control), the Control diet supplemented with 50 g RPC per day, a diet supplemented with HOS at 10% of dry matter, or RPC and HOS in combination (RPC + HOS). RPC supplementation had no effect on the FA composition of milk or sphingomyelin. Cows receiving RPC and RPC + HOS had increased incorporation of C22:5 (n-3) into phospholipids. Milk FA proportion of C18:0 and C18:1 isomers was increased in cows receiving HOS (HOS and RPC + HOS). Sphingomyelin proportion of C22:0 was increased in cows receiving HOS and RPC + HOS, at the expense of C23:0. HOS supplementation further increased the proportion of unsaturated fatty acids (UFA) in milk phospholipids. HOS supplementation increased mammary transcription of UDP-glucose ceramide glycosyltransferase (UGCG), sterol response element-binding protein cleavage-activating protein (SCAP) and peroxisome proliferation-activated receptor Gamma subunit C 1b (PPARGC1b), and reduced transcription of insulin induced gene 1 (INSIG1) and fatty acid-binding protein 3 (FABP3). Dietary supplementation of RPC increased mammary transcription of fatty acid desaturase 1 (FADS1) and longevity assurance gene 2 (LASS2), and reduced transcription of sphingomyelin synthase (SGMS). The results show that the FA profile of milk phospholipids is sensitive to dietary lipid supplementation and, to a minor degree, RPC supplementation. Furthermore, transcription of genes that are important for milk fat synthesis and sphingolipids synthesis is affected by dietary supplementation of RPC and HOS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.