Resonance Raman (RR) spectra for the resting state ferric and the reduced ferrous forms of recombinant Coprinus cinereus peroxidase (CIP), obtained with different excitation wavelengths and in polarized light, are reported. The spectra are compared with those obtained previously for cytochrome c peroxidase expressed in Escherichia coli [(CCP(MI)] and horseradish peroxidase (HRP-C). Although the enzymic properties of CIP and HRP-C are similar, the RR data show that, in terms of the heme cavity structures, CIP and CCP(MI) are much more closely related to each other than to HRP-C. The ferric state of CIP at neutral pH is characteristic mainly of a five-coordinate high spin heme. However, the lower frequency of the v2 mode and a higher frequency of the v(C = C) vinyl stretching modes for CIP as compared to CCP, indicate a higher degree of vibrational coupling between the two modes in CIP. In addition, CIP is rather unstable under low laser power irradiation as an irreversible transition to a six-coordinate high spin heme followed by a second transition to a six-coordinate low spin heme is observed. This instability of CIP as compared to CCP(MI) is proposed to be a consequence of the presence of a distal Phe54 in CIP rather than the homologous Trp51 in CCP, as Trp51 is hydrogen-bonded to a distal water molecule located above the heme Fe thereby preventing its coordination in CCP. In CIP the FeII-His RR band has two components with frequencies at 230 and 211 cm-1.(ABSTRACT TRUNCATED AT 250 WORDS)
The two structurally related peptides, vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP), are present in cerebral vascular nerve fibers. Biologic actions of VIP are exerted through two receptors, VPAC1 and VPAC2, having similar binding affinity for both VIP and PACAP. In the current study, the authors have developed a specific antibody against the rVPAC1 receptor to examine the localization of rVPAC1 immunoreactivity in cerebral arteries and arterioles of the rat by immunohistochemistry using fluorescence confocal microscopy. Specificity of the antiserum was ensured by immunoblotting and immunocytochemistry of cells transfected with cDNA encoding the different PACAP-VIP receptor subtypes. The rVPAC1 receptor immunoreactivity was localized to the plasmalemma of circularly orientated smooth muscle cells on superficial cerebral arteries and arterioles taken from the basal surface of the brain. By double immunostaining VIP immunoreactive nerve fibers and, to a lesser extent, those containing PACAP were shown to have intimate contact with the receptor protein. Vasoactive intestinal polypeptide and PACAP containing cerebrovascular nerve fibers were found in separate nerve populations with different distribution pattern and density. In brain sections processes of cortical VIP-, but not PACAP-, containing neurons seemed to innervate the rVPAC1 receptor of pial arterioles on the brain surface. The current findings provide the neuroanatomical substrate for a role of VIP and maybe PACAP in the regulation of cerebral blood flow.
The influence of N-linked glycans on the stability of glycoproteins has been studied using horseradish peroxidase isoenzyme C (HRP), which contains eight asparagine-linked glycans. HRP was deglycosylated (d-HRP) with trifluoromethanesulfonic acid and purified to an enzymatically active homogeneous protein containing (GlcNAc) P glycans. The thermal stability of HRP and d-HRP at pH 6.0, measured by residual activity, was indistinguishable and showed transition midpoints at 57³C, whereas the unfolding in guanidinium chloride at pH 7.0, 23³C was 2^3-fold faster for d-HRP than for HRP. The results are compatible with a glycan-induced decrease in the dynamic fluctuation of the polypeptide chain.z 1998 Federation of European Biochemical Societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.