In this paper, strained channel-sidewall damascened tri-gate polycrystalline silicon thin-film transistors (SC-SWDTG TFTs) have been successfully fabricated and then demonstrated by an innovative process flow. This process flow without the use of advanced lithography processes combines the sidewall damascened technique (SWDT) and two strain techniques, namely, the strain proximity free technique (SPFT), and the stress memorization technique (SMT), in the poly-Si channels. It has some advantages: (1) the channel shapes and dimensions can be effectively controlled by the wet etching processes and the deposition thickness of the tetraethoxysilane (TEOS) oxide; (2) the source/drain (S/D) resistance can be significantly decreased by the formation of the raised S/D structures; (3) the SPFT, SMT, and the rapid thermal annealing (RTA) treatment can enhance the performance of the SC-SWDTG TFTs without the limitation of the highly scaling stress liner thickness in deep-submicron TFTs. Thus, the SC-SWDTG TFTs exhibit a steep subthreshold swing (S.S.)∼110 mV/dec., an extremely small drain induced barrier lowing (DIBL) ∼12.2 mV V −1 , and a high on/off ratio ∼10 7 (V D =1 V) without plasma treatments for future three-dimensional integrated circuits (3D ICs) applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.