This paper reports the demonstration of structural effects on excimer laser crystallization (ELC) for the Si strip with a recessed-channel structure on the silicon nitride under-layer (RCS-ULN). We revealed that a single location-controlled grain boundary (GB) oriented normal to the Si strip in the middle site without any other GB in the recessed region can be attained via ELC for the RCS-ULN structures with a short recessed region between neighboring long thick regions in a narrow Si strip. This can be attributed to the effective production of a significant 2D lateral thermal gradient in the recessed region and neighboring thick regions. Consequently, the RCS-ULN TFTs fabricated at the position one-half of such an optimal recessed region can achieve a superior field-effect mobility of 670 cm 2 V −1 • s −1 with minor performance variations since the single-crystal-like Si channel has been adopted.