Membraneless organelles are liquid compartments within cells with different solvent properties than the surrounding environment. This difference in solvent properties is thought to result in function-related selective partitioning of proteins. Proteins have also been shown to accumulate in polyelectrolyte complexes, but whether the uptake in these complexes is selective has not been ascertained yet. Here, we show the selective partitioning of two structurally similar but oppositely charged proteins into polyelectrolyte complexes. We demonstrate that these proteins can be separated from a mixture by altering the polyelectrolyte complex composition and released from the complex by lowering the pH. Combined, we demonstrate that polyelectrolyte complexes can separate proteins from a mixture based on protein charge. Besides providing deeper insight into the selective partitioning in membraneless organelles, potential applications for selective biomolecule partitioning in polyelectrolyte complexes include drug delivery or extraction processes.
Allogeneic islet transplantation into the liver in combination with immune suppressive drug therapy is widely regarded as a potential cure for type 1 diabetes. However, the intrahepatic system is suboptimal as the concentration of drugs and nutrients there is higher compared to pancreas, which negatively affects islet function. Islet encapsulation within semipermeable membranes is a promising strategy that allows for the islet transplantation outside the suboptimal liver portal system and provides environment, where islets can perform their endocrine function. In this study, we develop a macroencapsulation device based on thin microwell membranes. The islets are seeded in separate microwells to avoid aggregation, whereas the membrane porosity is tailored to achieve sufficient transport of nutrients, glucose and insulin. The non-degradable, microwell membranes are composed of poly (ether sulfone)/polyvinylpyrrolidone and manufactured via phase separation micro molding. Our results show that the device prevents aggregation and preserves the islet’s native morphology. Moreover, the encapsulated islets maintain their glucose responsiveness and function after 7 days of culture (stimulation index above 2 for high glucose stimulation), demonstrating the potential of this novel device for islet transplantation.
Extrahepatic transplantation of islets of Langerhans could aid in better survival of islets after transplantation. When islets are transfused into the liver 60-70% of them are lost immediately after transplantation. An important factor for a successful extrahepatic transplantation is a well-vascularized tissue surrounding the implant. There are many strategies known for enhancing vessel formation such as adding cells with endothelial potential, the combination with angiogenic factors and / or applying surface topography at the exposed surface of the device. Previously we developed porous, micropatterned membranes which can be applied as a lid for an islet encapsulation device and we showed that the surface topography induces human umbilical vein endothelial cell (HUVEC) alignment and interconnection. This was achieved without the addition of hydrogels, often used in angiogenesis assays. In this work, we went one step further towards clinical implementation of the device by combining this micropatterned lid with Mesenchymal Stem Cells (MSCs) to facilitate prevascularization in vivo. As for HUVECs, the micropatterned membranes induced MSC alignment and organization in vitro, an important contributor to vessel formation, whereas in vivo (subcutaneous rat model) they contributed to improved implant prevascularization. In fact, the combination of MSCs seeded on the micropatterned membrane induced the highest vessel formation score in 80% of the sections.
Various solvents such as ionic liquids, deep eutectic solvents, and aqueous two phase systems have been suggested as greener alternatives to existing extraction processes. We propose to add macroscopic complex...
Cells use droplet‐like membrane‐less organelles (MLOs) to compartmentalize and selectively take‐up molecules, such as proteins, from their internal environment. These membraneless organelles can be mimicked by polyelectrolyte complexes (PECs) consisting of oppositely charged polyelectrolytes. Previous research has demonstrated that protein uptake strongly depends on the PEC composition. This suggests that PECs can be used to selectively extract proteins from a multi‐protein mixture. With this in mind, the partitioning of the protein lysozyme in four PEC systems consisting of different weak and strong polyelectrolyte combinations is investigated. All systems show similar trends in lysozyme partitioning as a function of the complex composition. The release of lysozyme from complexes at their optimal lysozyme uptake composition is investigated by increasing the salt concentration to 500 mm NaCl or lowering the pH from 7 to 4. Complexes of poly(allylamine hydrochloride) and poly(acrylic acid) have the best uptake and release properties. These are used for selective extraction of lysozyme from a hen‐egg white protein matrix. The (back)‐extracted lysozyme retains its enzymatic activity, showing the capability of PECs to function as extraction media for proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.