This is a repository copy of Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer.
This is a repository copy of Pan-cancer image-based detection of clinically actionable genetic alterations.
BACKGROUND & AIMS: Microsatellite instability (MSI) and mismatch-repair deficiency (dMMR) in colorectal tumors are used to select treatment for patients. Deep learning can detect MSI and dMMR in tumor samples on routine histology slides faster and less expensively than molecular assays. However, clinical application of this technology requires high performance and multisite validation, which have not yet been performed. METHODS: We collected H&E-stained slides and findings from molecular analyses for MSI and dMMR from 8836 colorectal tumors (of all stages) included in the MSI-DETECT consortium study, from Germany, the Netherlands, the United Kingdom, and the United States. Specimens with dMMR were identified by immunohistochemistry analyses of tissue microarrays for loss of MLH1, MSH2, MSH6, and/or PMS2. Specimens with MSI were identified by genetic analyses. We trained a deep-learning detector to identify samples with MSI from these slides; performance was assessed by cross-validation (N ¼ 6406 specimens) and validated in an external cohort (n ¼ 771 specimens). Prespecified endpoints were area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve
and tluedde@ukaachen.de 34 35 Precision treatment of cancer relies on genetic alterations which are diagnosed by molecular 36 biology assays. 1 These tests can be a bottleneck in oncology workflows because of high turna-37 round time, tissue usage and costs. 2 Here, we show that deep learning can predict point muta-38 tions, molecular tumor subtypes and immune-related gene expression signatures 3,4 directly 39 from routine histological images of tumor tissue. We developed and systematically optimized 40 a one-stop-shop workflow and applied it to more than 4000 patients with breast 5 , colon and 41 rectal 6 , head and neck 7 , lung 8,9 , pancreatic 10 , prostate 11 cancer, melanoma 12 and gastric 13 can-42 cer. Together, our findings show that a single deep learning algorithm can predict clinically ac-43 tionable alterations from routine histology data. Our method can be implemented on mobile 44 hardware 14 , potentially enabling point-of-care diagnostics for personalized cancer treatment 45 in individual patients. 46 Clinical guidelines recommend molecular testing of tumor tissue for most patients with advanced 47 209 The results are in part based upon data generated by the TCGA Research Network: http://can-210 cergenome.nih.gov/. Our funding sources are as follows. J.N.K.: RWTH University Aachen (START 211
Deep learning can detect microsatellite instability (MSI) from routine histology images in colorectal cancer (CRC). However, ethical and legal barriers impede sharing of images and genetic data, hampering development of new algorithms for detection of MSI and other biomarkers. We hypothesized that histology images synthesized by conditional generative adversarial networks (CGANs) retain information about genetic alterations. To test this, we developed a ‘histology CGAN’ which was trained on 256 patients (training cohort 1) and 1457 patients (training cohort 2). The CGAN synthesized 10 000 synthetic MSI and non‐MSI images which contained a range of tissue types and were deemed realistic by trained observers in a blinded study. Subsequently, we trained a deep learning detector of MSI on real or synthetic images and evaluated the performance of MSI detection in a held‐out set of 142 patients. When trained on real images from training cohort 1, this system achieved an area under the receiver operating curve (AUROC) of 0.742 [0.681, 0.854]. Training on the larger cohort 2 only marginally improved the AUROC to 0.757 [0.707, 0.869]. Training on purely synthetic data resulted in an AUROC of 0.743 [0.658, 0.801]. Training on both real and synthetic data further increased AUROC to 0.777 [0.715, 0.821]. We conclude that synthetic histology images retain information reflecting underlying genetic alterations in colorectal cancer. Using synthetic instead of real images to train deep learning systems yields non‐inferior classifiers. This approach can be used to create large shareable data sets or to augment small data sets with rare molecular features. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.