Waterjet guided laser (WJGL) cutting is a relatively new technology for high-precision machining of difficult-to-cut materials. However, its material removal mechanism presents some unique features because of the interaction between laser, waterjet and workpiece. This paper investigates the surface formation mechanism in WJGL cutting of Ni-based superalloy and its influence on the fatigue performance. Two different microstructures have been found on the surface layer, i.e. recast crystals and redeposited amorphous oxide, resulting from solidification of melt and plasma respectively under the laser-waterjet interaction. Mechanical twinning structures were also revealed in the substrate due to the waterjet confined plasma shockwave impact.
The hot section parts in a gas turbine are subject to high working temperatures and mechanical forces. In order to endure the harsh conditions, these parts are generally made of nickel-based superalloys. Furthermore, microholes are drilled on them to help with cooling by allowing the air to pass through. These holes increase the allowable working temperature and service life of the parts as well. Water Jet Guided Laser is a technology that can be conveniently used for microdrilling operations on aerospace jet engine parts. It is a hybrid process, in which a laser beam is coupled with and guided through a thin cylindrical water jet. Pressurized water provides focusing, cooling, and cleaning on the cut region, eliminating undesired side effects of the laser. The technology has many advantages over traditional laser machining, such as consistent focusing, burr-free cutting, minimized tapering, reduced heat affected zone, and recast layer. In this paper, using the Water Jet Guided Laser, variation in process time and quality are studied on different aerospace nickel-based superalloys. The results depend mainly on the thermophysical properties of the processed materials. The experimental results are compared with calculations and correlated to the material properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.