Chemical agents such as trichostatin A (TSA) can assist in optimization of doubled haploidy for rapid improvements in wheat germplasm and addressing recalcitrance issues in cell culture responses. In wheat, plant regeneration through microspore culture is an integral part of doubled haploid (DH) production. However, low response to tissue culture and genotype specificity are two major constraints in the broad deployment of this breeding tool. Recently, the structure of chromatin was shown to be linked with cell transitions during tissue culture. Specifically, repression of genes that are required for cell morphogenesis, through acetylation of histones, may play an important role in this process. Reduction of histone acetylation by chemical inhibition may increase tissue culture efficiency. Here, the role of trichostatin A (TSA) in inducing microspore-derived embryos was investigated in wheat. The optimal dose of TSA was determined for wheat cultivars and subsequently validated in F hybrids. A significant increase in the efficiency of DH production was observed in both cultivated varieties and F hybrids. Thus, the inclusion of TSA in DH protocols for wheat breeding programs is advocated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.