This paper presents new, carefully designed algorithms for five bi-objective permutation flow shop scheduling problems that arise from the pairwise combinations of the objectives (i) makespan, (ii) the sum of the completion times of the jobs, and (iii) both, the weighted and non-weighted total tardiness of all jobs. The proposed algorithm combines two search methods, two-phase local search and Pareto local search, which are representative of two different, but complementary, paradigms for multi-objective optimisation in terms of Pareto-optimality. The design of the hybrid algorithm is based on a careful experimental analysis of crucial algorithmic components of these two search methods. We compared our algorithm to the two best algorithms identified, among a set of 23 candidates algorithms, in a recent review of the bi-objective permutation flow-shop scheduling problem. We have reimplemented carefully these two algorithms in order to assess the quality of our algorithm. The experimental comparison in this paper shows that the proposed algorithm obtains results that often dominate the output of the two algorithms from the literature. Therefore, our analysis shows without ambiguity that the proposed algorithm is a new state-of-the-art algorithm for the bi-objective permutation flow-shop problems studied in this paper.
Pareto Local Search (PLS) is a simple and effective local search method for tackling multi-objective combinatorial optimization problems. It is also a crucial component of many state-of-the-art algorithms for such problems. However, PLS may be not very effective when terminated before completion. In other words, PLS has poor anytime behavior. In this paper, we study the effect that various PLS algorithmic components have on its anytime behavior. We show that the anytime behavior of PLS can be greatly improved by using alternative algorithmic components. We also propose Dynagrid, a dynamic discretization of the objective space that helps PLS to converge faster to a good approximation of the Pareto front and continue to improve it if more time is available. We perform a detailed empirical evaluation of the new proposals on the bi-objective traveling salesman problem and the bi-objective quadratic assignment problem. Our results demonstrate that the new PLS variants not only have significantly better anytime behavior than the original PLS, but also may obtain better results for longer computation time or upon completion.
Algorithms based on the two-phase local search (TPLS) framework are a powerful method to efficiently tackle bi-objective combinatorial optimization problems. TPLS algorithms solve a sequence of scalarizations, that is, weighted sum aggregations, of the bi-objective problem. Each successive scalarization uses a different weight from a predefined sequence of weights. TPLS requires defining the stopping criterion (the number of weights) a priori, and it does not produce satisfactory results if stopped before completion. Therefore, TPLS has poor "anytime" behavior. This article examines variants of TPLS that improve its "anytime" behavior by adaptively generating the sequence of weights while solving the problem, with the aim of filling the "largest gap" in the current approximation to the Pareto front. The experimental setup considers problems with strong differences in the shape of the Pareto front, and the analysis indicates which adaptive strategy is the best for each shape. The results presented here show that the best adaptive TPLS variants are superior to the "classical" TPLS strategies in terms of anytime behavior, and also match, and often surpass, them in terms of final quality, even if the latter run until completion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.