BackgroundPoultry represent an important source of foodborne enteropathogens, in particular thermophilic Campylobacter species. Many of these organisms colonize the intestinal tract of broiler chickens as harmless commensals, and therefore, often remain undetected prior to slaughter. The exact reasons for the lack of clinical disease are unknown, but analysis of the gastrointestinal microbiota of broiler chickens may improve our understanding of the microbial interactions with the host.MethodsIn this study, the fecal microbiota of 31 market-age (56-day old) broiler chickens, from two different farms, was analyzed using high throughput sequencing. The samples were then screened for two emerging human pathogens, Campylobacter concisus and Helicobacter pullorum, using species-specific PCR.ResultsThe gastrointestinal microbiota of chickens was classified into four potential enterotypes, similar to that of humans, where three enterotypes have been identified. The results indicated that variations between farms may have contributed to differences in the microbiota, though each of the four enterotypes were found in both farms suggesting that these groupings did not occur by chance. In addition to the identification of Campylobacter jejuni subspecies doylei and the emerging species, C. concisus, C. upsaliensis and H. pullorum, several differences in the prevalence of human pathogens within these enterotypes were observed. Further analysis revealed microbial taxa with the potential to increase the likelihood of colonization by a number of these pathogens, including C. jejuni.ConclusionDepletion of these taxa and the addition of taxa that compete with these pathogens, may form the basis of competitive exclusion strategies to eliminate them from the gastrointestinal tract of chickens.
The genus Cronobacter accommodates the 16 biogroups of the emerging opportunistic pathogen known formerly as Enterobacter sakazakii. Cronobacter spp. are occasional contaminants of milk powder and, consequently, powdered infant formula and represent a significant health risk to neonates. This review presents current knowledge of the food safety aspects of Cronobacter, particularly in infant formula milk powder. Sources of contamination, ecology, disease characteristics and risk management strategies are discussed. Future directions for research are indicated, with a particular focus on the management of this increasingly important bacterium in the production environment.
Campylobacter spp. are important causes of bacterial gastroenteritis in humans in developed countries. Among Campylobacter spp. Campylobacter jejuni (C. jejuni) and C. coli are the most common causes of human infection. In this study, a multiplex PCR (mPCR) and high resolution melt (HRM) curve analysis were optimized for simultaneous detection and differentiation of C. jejuni and C. coli isolates. A segment of the hippuricase gene (hipO) of C. jejuni and putative aspartokinase (asp) gene of C. coli were amplified from 26 Campylobacter isolates and amplicons were subjected to HRM curve analysis. The mPCR-HRM was able to differentiate between C. jejuni and C. coli species. All DNA amplicons generated by mPCR were sequenced. Analysis of the nucleotide sequences from each isolate revealed that the HRM curves were correlated with the nucleotide sequences of the amplicons. Minor variation in melting point temperatures of C. coli or C. jejuni isolates was also observed and enabled some intraspecies differentiation between C. coli and/or C. jejuni isolates. The potential of PCR-HRM curve analysis for the detection and speciation of Campylobacter in additional human clinical specimens and chicken swab samples was also confirmed. The sensitivity and specificity of the test were found to be 100% and 92%, respectively. The results indicated that mPCR followed by HRM curve analysis provides a rapid (8 hours) technique for differentiation between C. jejuni and C. coli isolates.
Thick anatase films were fabricated on graphite substrates using a method of anodic aqueous electrophoretic-deposition using oxalic acid as a dispersant. Thick films were subsequently fired in air and in nitrogen at a range of temperatures. The morphology and phase composition were assessed and the photocatalytic performance was examined by the inactivation of Escherichia coli in water. It was found that the transformation of anatase to rutile is enhanced by the presence of a graphite substrate through reduction effects. The use of a nitrogen atmosphere allows higher firing temperatures, results in less cracking of the films and yields superior bactericidal performance in comparison with firing in air. The beneficial effects of a nitrogen firing atmosphere on the photocatalytic performance of the material are likely to be a result of the diffusion of nitrogen and carbon into the TiO 2 lattice and the consequent creation of new valence band states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.