BaSO4 fibres with morphological complexity were formed in aqueous solution with polyacrylate and partially monophosphonated poly(ethyleneoxide)-block-poly(methacrylic acid) additives by a simple precipitation reaction. For polyacrylate, formation of the fibrous deposits was strongly dependent on the level of supersaturation (S) and Ba2+:polymer molar ratio (R). At S = 60 to 80, and R = 3 to 14, highly anisotropic crystalline fibres consisting of bundles of BaSO4 nanofilaments were formed after several weeks, although the yield was low. The nanofilaments were also organized into cone-shaped aggregates at S = 80, and at lower R values these formed higher-order structures that consisted of multiple cone-on-cone assemblies with remarkable self-similarity. Increasing the supersaturation produced ovoid or cross-shaped dendritic particles for the range of molar ratios studied. In contrast, BaSO4 crystallisation in the presence of a partially phosphonated block copolymer gave a high yield of BaSO4 fibres up to 100 microm in length, and consisting of co-aligned bundles of 30 nm-diameter defect-free single-crystal nanofilaments with a uniform growth tip. A model for the defect-free growth of BaSO4 nanofilaments in aqueous polymer solutions based on amorphous precursor particles, vectorially directing forces and van der Waals attraction is proposed.
Supersaturated reverse micelles and microemulsions containing either AOT (sodium bis-(2-ethylhexylsulfosuccinate)), C 12 EO 4 (poly(oxyethylene-4-dodecyl ether)), or DDAB (didodecyldimethylammonium bromide) surfactants have been used as organized reaction microenvironments for barium sulfate precipitation. Nanoclusters of amorphous barium sulfate, 2-4 nm in size, were formed in association with BaNaAOT reverse micelles. In contrast, highly elongated filaments of crystalline barium sulfate, with lengths up to 100 µm and aspect ratios of 1000, were formed in BaNaAOT microemulsions. The individual filaments were single crystals of barite elongated predominantly along the [010] axis and in some instances consisted of coaligned nanofilaments, 20-50 nm in width. Similar reactions in C 12 EO 4 reverse micelles and microemulsions afforded barite nanocrystals, 5-7 nm in dimension and tabular-shaped barite crystals, up to 400 nm in size, respectively. Rhombic crystals of barite, approximatety 200 nm in size, were deposited in DDAB microemulsions. No barite filaments were observed in the C 12 EO 4 and DDAB systems. A generalized mechanism for the growth of barite nanofilaments in AOT microemulsions, involving the irreversible fusion, unidirectional exchange, and coalescence of microemulsion droplets, followed by crystallization of an amorphous filamentous BaSO 4 /surfactant phase, is described.
The chemical construction of organized architectures is an important aspect of innovative materials synthesis. Bicontinuous water-filled microemulsions can be used as preorganized systems for the fabrication of crystalline calcium phosphate materials with extended reticulated microstructures. These macroporous materials are formed by mineralization reactions located within the interconnecting water channels of the bicontinuous network. The resulting materials represent replicas of the microemulsion architecture, but the pore sizes are incommensurate, suggesting that secondary modifications in the bicontinuous microstructure occur during crystal growth. Synthetic macroporous calcium phosphates could have uses in biomaterial implants.
Phosphate is added to drinking water in the UK to minimise the release of lead from lead water pipes. The phosphate encourages the formation of insoluble lead apatites on the walls of the pipe. Hydroxylpyromorphite Pb5(PO4)3OH is the lead apatite that is most often used to model lead levels in tap water; however, its presence has not been confirmed. Our aims were to identify the lead pipe apatite and synthesise it. The synthetic mineral would then be used in future solubility studies to produce better predictions of lead levels in tap water. XRD and FTIR were used to characterise the minerals on a range of lead pipes. Pyromorphite and hydroxylpyromorphite were absent and instead a range of mixed calcium lead apatites were present. For every five lead ions in the general formula Pb5(PO4)3X between one and two ions were replaced with calcium and there was evidence of substitution ofPO43-by eitherCO32-orHPO42-. Calcium lead apatites with similar unit cell dimensions to those found on lead water pipes were then synthesised. The calcium : lead ratio in these reaction mixtures was in excess of 500 : 1 and the resulting crystals were shown by TEM to be nanosized rods and flakes. The synthetic apatites that most closely resembled the unit cell dimensions of the apatites on lead water pipes were shown to be Pb3.4Ca1.3(PO4)3Cl0.03OH0.97, Pb3.6Ca1.2(PO4)3Cl0.07OH0.93, and Pb3.6Ca1.2(PO4)3Cl0.27OH0.73.
In this study a combination of neutron diffraction measurements and empirical potential structure refinement (EPSR) was used to investigate the time-averaged structure of a 0.30 mol fraction solution of urea in water at both 25 and 35°C. These two temperatures were chosen in order to compare the structure of an undersaturated solution at 35°C with that of a supersaturated solution at 25°C. The results indicate that in moving into the supersaturated state the solutions show a significant and unexpected change in the self-aggregation of urea molecules. Urea-urea interactions present in the undersaturated solution become suppressed in the supersaturated region, in favor of interactions between urea and water so that overall the urea becomes more hydrated. Such a change may be viewed as a response of the system to the imposed supersaturation and a factor playing an important role in the observed metastability of the solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.