This paper proposes to use distributed representation of words (word embeddings) in cross-language textual similarity detection. The main contributions of this paper are the following: (a) we introduce new cross-language similarity detection methods based on distributed representation of words; (b) we combine the different methods proposed to verify their complementarity and finally obtain an overall F 1 score of 89.15% for English-French similarity detection at chunk level (88.5% at sentence level) on a very challenging corpus.
This paper is a deep investigation of cross-language plagiarism detection methods on a new recently introduced open dataset, which contains parallel and comparable collections of documents with multiple characteristics (different genres, languages and sizes of texts). We investigate cross-language plagiarism detection methods for 6 language pairs on 2 granularities of text units in order to draw robust conclusions on the best methods while deeply analyzing correlations across document styles and languages.
We present our submitted systems for Semantic Textual Similarity (STS) Track 4 at SemEval-2017. Given a pair of SpanishEnglish sentences, each system must estimate their semantic similarity by a score between 0 and 5. In our submission, we use syntax-based, dictionary-based, context-based, and MT-based methods. We also combine these methods in unsupervised and supervised way. Our best run ranked 1 st on track 4a with a correlation of 83.02% with human annotations.
This article describes our proposed system named LIM-LIG. This system is designed for SemEval 2017 Task1: Semantic Textual Similarity (Track1). LIM-LIG proposes an innovative enhancement to word embedding-based model devoted to measure the semantic similarity in Arabic sentences. The main idea is to exploit the word representations as vectors in a multidimensional space to capture the semantic and syntactic properties of words. IDF weighting and Part-of-Speech tagging are applied on the examined sentences to support the identification of words that are highly descriptive in each sentence. LIM-LIG system achieves a Pearsons correlation of 0.74633, ranking 2nd among all participants in the Arabic monolingual pairs STS task organized within the SemEval 2017 evaluation campaign.
Abstract. Semantic Textual Similarity (STS) is an important component in manyNatural Language Processing (NLP) applications, and plays an important role in diverse areas such as information retrieval, machine translation, information extraction and plagiarism detection. In this paper we propose two word embeddingbased approaches devoted to measuring the semantic similarity between ArabicEnglish cross-language sentences. The main idea is to exploit Machine Translation (MT) and an improved word embedding representations in order to capture the syntactic and semantic properties of words. MT is used to translate English sentences into Arabic language in order to apply a classical monolingual comparison. Afterwards, two word embedding-based methods are developed to rate the semantic similarity. Additionally, Words Alignment (WA), Inverse Document Frequency (IDF) and Part-of-Speech (POS) weighting are applied on the examined sentences to support the identification of words that are most descriptive in each sentence. The performances of our approaches are evaluated on a crosslanguage dataset containing more than 2400 Arabic-English pairs of sentence. Moreover, the proposed methods are confirmed through the Pearson correlation between our similarity scores and human ratings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.