In this work, electrospun tubes of interest for vascular tissue engineering were fabricated and evaluated for burst pressure and suture retention strength (SRS) in the same context as tensile strength providing a direct, novel comparison. Tubes could be fabricated displaying average burst pressures up to 4000 mmHg--well above the standard of 2000 mmHg--and SRS values matching those of relevant natural tissues. Surprisingly, highly oriented fiber and maximal tensile properties are not absolutely necessary to attain clinically adequate burst pressures. The ability to resist bursting is clearly related to both initial solution solids loading and electrospinning deposition time. We make novel in situ observations of the relative microstructural characteristics of failure during bursting, and connect this to the conditions used to fabricate the graft. Processes typically thought to promote fiber alignment are, in fact, highly condition-dependent and do not always provide superior properties. In fact, electrospun structures displaying no discernable alignment could achieve burst pressures regarded clinically sufficient. The properties of individual electrospun fiber clearly do not fully dictate macroscale properties. Normal background levels of point bonding are enhanced by increased rotational speeds, and can have effects on properties more dominant than those of alignment.
Even after decades of clinical use, our ability to quantify wear across total hip replacement implant surfaces is largely limited to single value measurements. The influence of patient factors on wear remains enigmatic. This pilot study for the development of three-dimensional laser micrometry (3DLM) introduces an easy, accurate means of 'mapping' and quantifying material removal. A three-dimensional laser micrometer was constructed using a laser micrometer having an accuracy of 0.5 microm. A 3D surface map is triangulated from a point cloud consisting of approximately 140,000 individual points. Comparison to a reference sphere determines radial wear over the entire surface. 3DLM was able to map and quantify fine scale surface features. Even for zirconia on relatively soft ultra-high molecular weight polyethylene, this technique maps the contributions of localized wear at the macroscopic level. The 0.5 microm (or greater) accuracy of these lasers allows us to image surfaces with a high degree of confidence. This analysis lends itself well to automation, and we anticipate that this advance will prove valuable in establishing that each head and cup combination emerging from a given clinical environment has unique wear patterns as observed in this trial data set.
We applied a recently developed method, laser metrology, to characterize the influence of collector rotation on porosity gradients of electrospun polycaprolactone (PCL) widely investigated for use in tissue engineering. The prior- and post-sintering dimensions of PCL scaffolds were compared to derive quantitative, spatially-resolved porosity ‘maps’ from net shrinkage. Deposited on a rotating mandrel (200 RPM), the central region of deposition reaches the highest porosity, ~92%, surrounded by approximately symmetrical decreases to ~89% at the edges. At 1100 RPM, a uniform porosity of ~88–89% is observed. At 2000 RPM, the lowest porosity, ~87%, is found in the middle of the deposition, rebounding to ~89% at the edges. Using a statistical model of random fiber network, we demonstrated that these relatively small changes in porosity values produce disproportionately large variations in pore size. The model predicts an exponential dependence of pore size on porosity when the scaffold is highly porous (e.g., >80%) and, accordingly, the observed porosity variation is associated with dramatic changes in pore size and ability to accommodate cell infiltration. Within the thickest regions most likely to ‘bottleneck’ cell infiltration, pore size decreases from ~37 to 23 μm (38%) when rotational speeds increased from 200 to 2000 RPM. This trend is corroborated by electron microscopy. While faster rotational speeds ultimately overcome axial alignment induced by cylindrical electric fields associated with the collector geometry, it does so at the cost of eliminating larger pores favoring cell infiltration. This puts the bio-mechanical advantages associated with collector rotation-induced alignment at odds with biological goals. A more significant decrease in pore size from ~54 to ~19 μm (65%), well below the minimum associated with cellular infiltration, is observed from enhanced collector biases. Finally, similar predictions show that sacrificial fiber approaches are inefficient in achieving cell-permissive pore sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.