In this paper we report for the first time on the room temperature template synthesis of germanium and silicon nanowires by potentiostatic electrochemical deposition from the air- and water stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py(1,4)]Tf(2)N) containing GeCl(4) and SiCl(4) as a Ge and Si source, respectively. Commercially-available track-etched polycarbonate membranes (PC) with an average nominal pore diameter of 90-400 nm were used as templates. Ge and Si nanowires with an average diameter corresponding to the nanopores' diameter and lengths of a few micrometres were reproducibly obtained. Structural characterization of the nanowires was performed by EDX, TEM, HR-SEM and Raman spectroscopy. Despite the rough surface of the nanowires, governed mostly by the original shape of the nanopore's wall of the commercially-available PC membrane, preliminary structural characterizations demonstrate the promising prospective of this innovative elaboration process compared to constraining high vacuum and high temperature methods.
Silicon nanowires were fabricated for the first time by electrochemical template synthesis at room temperature. This innovative, cheap, and simple process consists of electroreduction of Si ions using a nonaqueous solvent and insulating nanoporous membranes with average pore diameters from 400 to 15 nm which fix the nanowires diameters. Characterization techniques such as scanning and transmission electron microscopies, infrared absorption measurements, X-ray diffraction experiments, energy dispersive X-ray, and Raman spectrometries show that the as-deposited silicon nanowires are amorphous, composed of pure Si and homogeneous in sizes with average diameters and lengths well matching with the nanopores' diameters and the thicknesses of the membranes. Thanks to annealing treatments, it is possible to crystallize the Si nanowires, demonstrating the potentiality for this innovative electrochemical process to obtain a wide range of Si nanowires with well controlled diameters and lengths.
Arrays of face-centred cubic (fcc) CoxPt1 − x (0.45 < x < 0.55) nanowires were electrodeposited into thin film nanoporous alumina supported on a Si substrate. The heat treatment under specific conditions was then carried out in order to transform the fcc phase into the face-centred tetragonal or L10 ordered phase. The influence of both the phase transition and the temperature on the magnetic properties of CoxPt1−x nanowires has been studied. Coercive fields higher than 1 T (10 kOe) have been obtained at room temperature with ordered nanowires, 80 nm in diameter.
Co X Pt 1−X alloy nanowires were fabricated by electrochemical template synthesis from a solution containing both Co(II) and Pt(II) ions. Over a wide range of deposition conditions, single-phase, fcc CoXPt1−X alloy nanowires were obtained. The nanowires exhibit both shape and magnetocrystalline anisotropy leading to large coercivity and high remanence along the wire axis. The magnetocrystalline anisotropy constant Ku was determined for 〈111〉 textured nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.