We provide a demonstration in humans of the principle of pharmacometabonomics by showing a clear connection between an individual's metabolic phenotype, in the form of a predose urinary metabolite profile, and the metabolic fate of a standard dose of the widely used analgesic acetaminophen. Predose and postdose urinary metabolite profiles were determined by 1 H NMR spectroscopy. The predose spectra were statistically analyzed in relation to drug metabolite excretion to detect predose biomarkers of drug fate and a human-gut microbiome cometabolite predictor was identified. Thus, we found that individuals having high predose urinary levels of p-cresol sulfate had low postdose urinary ratios of acetaminophen sulfate to acetaminophen glucuronide. We conclude that, in individuals with high bacterially mediated p-cresol generation, competitive O-sulfonation of p-cresol reduces the effective systemic capacity to sulfonate acetaminophen. Given that acetaminophen is such a widely used and seemingly well-understood drug, this finding provides a clear demonstration of the immense potential and power of the pharmacometabonomic approach. However, we expect many other sulfonation reactions to be similarly affected by competition with p-cresol and our finding also has important implications for certain diseases as well as for the variable responses induced by many different drugs and xenobiotics. We propose that assessing the effects of microbiome activity should be an integral part of pharmaceutical development and of personalized health care. Furthermore, we envisage that gut bacterial populations might be deliberately manipulated to improve drug efficacy and to reduce adverse drug reactions.T he effects of drug treatments can vary greatly between different individuals, and pharmacogenomics has been widely advocated as a potential means of personalizing human drug treatments to increase drug efficacy and to decrease adverse reactions (1-6). However, environmental factors (such as nutritional status, gut bacterial activities, age, disease, and other drug use) are also important determinants of individual metabolic phenotypes, which modulate drug metabolism, efficacy, and toxicity. Such environmental complications, which may also alter gene expression, will tend to limit the usefulness of predictions of drug-induced responses that are based only on genomic differences (7,8). For instance, for many classes of compound, enzyme induction state, which is environmentally determined, influences drug metabolism and toxicity and this is not captured in genomic data. Recognizing this important limitation of pharmacogenomics, a different approach to personalized drug treatment has recently been proposed wherein predose metabolite profiling would instead be used to predict a subject's responses to potential drug interventions (9). This ''pharmacometabonomic'' approach has a number of major advantages, which include the ready availability and relative ease of analysis of biofluids, such as urine and blood plasma, as well as the fact that ...
Metabonomics/metabolomics is an important science for the understanding of biological systems and the prediction of their behaviour, through the profiling of metabolites. Two technologies are routinely used in order to analyse metabolite profiles in biological fluids: nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), the latter typically with hyphenation to a chromatography system such as liquid chromatography (LC), in a configuration known as LC–MS. With both NMR and MS-based detection technologies, the identification of the metabolites in the biological sample remains a significant obstacle and bottleneck. This article provides guidance on methods for metabolite identification in biological fluids using NMR spectroscopy, and is illustrated with examples from recent studies on mice.
There is a clear case for drug treatments to be selected according to the characteristics of an individual patient, in order to improve efficacy and reduce the number and severity of adverse drug reactions. However, such personalization of drug treatments requires the ability to predict how different individuals will respond to a particular drug/dose combination. After initial optimism, there is increasing recognition of the limitations of the pharmacogenomic approach, which does not take account of important environmental influences on drug absorption, distribution, metabolism and excretion. For instance, a major factor underlying inter-individual variation in drug effects is variation in metabolic phenotype, which is influenced not only by genotype but also by environmental factors such as nutritional status, the gut microbiota, age, disease and the co- or pre-administration of other drugs. Thus, although genetic variation is clearly important, it seems unlikely that personalized drug therapy will be enabled for a wide range of major diseases using genomic knowledge alone. Here we describe an alternative and conceptually new 'pharmaco-metabonomic' approach to personalizing drug treatment, which uses a combination of pre-dose metabolite profiling and chemometrics to model and predict the responses of individual subjects. We provide proof-of-principle for this new approach, which is sensitive to both genetic and environmental influences, with a study of paracetamol (acetaminophen) administered to rats. We show pre-dose prediction of an aspect of the urinary drug metabolite profile and an association between pre-dose urinary composition and the extent of liver damage sustained after paracetamol administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.