In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this document we present an overview of lattice-QCD and globalanalysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. This document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.The detailed understanding of the inner structure of nucleons is an active research field with phenomenological implications in high-energy, hadron, nuclear and astroparticle physics. Within quantum chromodynamics (QCD), information on this structure -specifically on how the nucleon's momentum and spin are divided among quarks and gluons -is encoded in parton distribution functions (PDFs).There exist two main methods to determine PDFs. 1 The first method is the global QCD analysis [3][4][5][6][7][8][9][10][11][12]. It is based on QCD factorization of physical observables, i.e. the fact that a class of hard-scattering cross-sections can be expressed as a convolution between short-distance, perturbative, matrix elements and long-distance, nonperturbative, PDFs. By combining a variety of available hard-scattering experimental data with state-of-the-art perturbative calculations, complete PDF sets, including the gluon and various combinations of quark flavors, are currently determined for protons, in both the unpolarized [13][14][15][16][17] and the polarized [18][19][20][21] case.Recent progress in global QCD analyses has been driven, on the one hand, by the increasing availability of a wealth of high-precision measurements from Jefferson Lab, HERA, RHIC, the Tevatron and the LHC and, on the other hand, by the advancement in perturbative calculations of QCD and electroweak (EW) higher-order corrections. Parton distributions are now determined with unprecedented precision, in many cases at the few-percent level. A paradigmatic illustration of this progress is provided by both the unpolarized and polarized gluon PDFs, which were affected by rather large uncertainties until recently, due to the limited experimental information available. In the unpolarized case, the gluon PDF is now constrained quite accurately from small to large x thanks to the inclusion of processes such a...
Parton quasidistribution functions provide a path toward an ab initio calculation of parton distribution functions (PDFs) using lattice QCD. One of the problems faced in calculations of quasi-PDFs is the renormalization of a nonlocal operator. By introducing an auxiliary field, we can replace the nonlocal operator with a pair of local operators in an extended theory. On the lattice, this is closely related to the static quark theory. In this approach, we show how to understand the pattern of mixing that is allowed by chiral symmetry breaking and obtain a master formula for renormalizing the nonlocal operator that depends on three parameters. We present an approach for nonperturbatively determining these parameters and use perturbation theory to convert to the modified minimal subtraction (MS[over ¯]) scheme. Renormalization parameters are obtained for two lattice spacings using Wilson twisted mass fermions and for different discretizations of the Wilson line in the nonlocal operator. Using these parameters, we show the effect of renormalization on nucleon matrix elements with a pion mass of approximately 370 MeV and compare renormalized results for the two lattice spacings. The renormalized matrix elements are consistent among the different Wilson line discretizations and lattice spacings.
We report the first Lattice QCD calculation using the almost physical pion mass m π = 149 MeV that agrees with experiment for four fundamental isovector observables characterizing the gross structure of the nucleon: the Dirac and Pauli radii, the magnetic moment, and the quark momentum fraction. The key to this success is the combination of using a nearly physical pion mass and excluding the contributions of excited states. An analogous calculation of the nucleon axial charge governing beta decay has inconsistencies indicating a source of bias at low pion masses not present for the other observables and yields a result that disagrees with experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.