Abstract. With many ecosystems now supporting multiple nonnative species from different trophic levels, it can be challenging to disentangle the net effects of invaders within a community context. Here, we combined wetland surveys with a mesocosm experiment to examine the individual and combined effects of nonnative fish predators and nonnative bullfrogs on aquatic communities. Among 139 wetlands, nonnative fish (bass, sunfish, and mosquitofish) negatively influenced the probability of occupancy of Pacific treefrogs (Pseudacris regilla), but neither invader correlated strongly with occupancy by California newts (Taricha torosa), western toads (Anaxyrus boreas), or California red-legged frogs (Rana draytonii ). In mesocosms, mosquitofish dramatically reduced the abundance of zooplankton and palatable amphibian larvae (P. regilla and T. torosa), leading to increases in nutrient concentrations and phytoplankton (through loss of zooplankton), and rapid growth of unpalatable toad larvae (through competitive release). Bullfrog larvae reduced the growth of native anurans but had no effect on survival. Despite strong effects on natives, invaders did not negatively influence one another, and their combined effects were additive. Our results highlight how the net effects of multiple nonnative species depend on the trophic level of each invader, the form and magnitude of invader interactions, and the traits of native community members.
With growing interest in the effects of biodiversity on disease, there is a critical need for studies that empirically identify the mechanisms underlying the diversity-disease relationship. Here, we combined wetland surveys of host community structure with mechanistic experiments involving a multi-host parasite to evaluate competing explanations for the dilution effect. Sampling of 320 wetlands in California indicated that snail host communities were strongly nested, with competent hosts for the trematode Ribeiroia ondatrae predominating in low-richness assemblages and unsuitable hosts increasingly present in more diverse communities. Moreover, competent host density was negatively associated with increases in snail species richness. These patterns in host community assembly support a key prerequisite underlying the dilution effect. Results of multigenerational mesocosm experiments designed to mimic field-observed community assemblages allowed us to evaluate the relative importance of host density and diversity in influencing parasite infection success. Increases in snail species richness (from one to four species) had sharply negative effects on the density of infected hosts (-90% reduction). However, this effect was indirect; competition associated with non-host species led to a 95% reduction in host density (susceptible host regulation), owing primarily to a reduction in host reproduction. Among susceptible hosts, there were no differences in infection prevalence as a function of community structure, indicating a lack of support for a direct effect of diversity on infection (encounter reduction). In monospecific conditions, higher initial host densities increased infection among adult hosts; however, compensatory reproduction in the low-density treatments equalized the final number of infected hosts by the next generation, underscoring the relevance of multigenerational studies in understanding the dilution effect. These findings highlight the role of interspecific competition in mediating the relationship between species richness and parasite infection and emphasize the importance of field-informed experimental research in understanding mechanisms underlying the diversity-disease relationship.
24Describing the mechanisms that drive variation in species interaction strengths is central 25 to understanding, predicting, and managing community dynamics. Multiple factors have 26 been linked to trophic interaction strength variation, including species densities, species 27 traits, and abiotic factors. Yet most empirical tests of the relative roles of multiple 28 mechanisms that drive variation have been limited to simplified experiments that may 29 diverge from the dynamics of natural food webs. Here, we used a field-based 30 observational approach to quantify the roles of prey density, predator density, predator-31 prey body-mass ratios, prey identity, and abiotic factors in driving variation in feeding 32 rates of reticulate sculpin (Cottus perplexus). We combined data on over 6,000 predator-33 prey observations with prey identification time functions to estimate 289 prey-specific 34 feeding rates at nine stream sites in Oregon. Feeding rates on 57 prey types showed an 35 approximately log-normal distribution, with few strong and many weak interactions. 36Model selection indicated that prey density, followed by prey identity, were the two most 37 important predictors of prey-specific sculpin feeding rates. Feeding rates showed a 38 positive, accelerating relationship with prey density that was inconsistent with predator 39 saturation predicted by current functional response models. Feeding rates also exhibited 40 four orders-of-magnitude in variation across prey taxonomic orders, with the lowest 41 feeding rates observed on prey with significant anti-predator defenses. Body-mass ratios 42were the third most important predictor variable, showing a hump-shaped relationship 43 with the highest feeding rates at intermediate ratios. Sculpin density was negatively 44 correlated with feeding rates, consistent with the presence of intraspecific predator 45 interference. Our results highlight how multiple co-occurring drivers shape trophic 46All rights reserved. No reuse allowed without permission.was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.The copyright holder for this preprint (which . http://dx
The language that scientists use to frame biological invasions may reveal inherent bias—including how data are interpreted. A frequent critique of invasion biology is the use of value-laden language that may indicate context bias. Here we use a systematic study of language and interpretation in papers drawn from invasion biology to evaluate whether there is a link between the framing of papers and the interpretation of results. We also examine any trends in context bias in biological invasion research. We examined 651 peer-reviewed invasive species competition studies and implemented a rigorous systematic review to examine bias in the presentation and interpretation of native and invasive competition in invasion biology. We predicted that bias in the presentation of invasive species is increasing, as suggested by several authors, and that bias against invasive species would result in misinterpreting their competitive dominance in correlational observational studies compared to causative experimental studies. We indeed found evidence of bias in the presentation and interpretation of invasive species research; authors often introduced research with invasive species in a negative context and study results were interpreted against invasive species more in correlational studies. However, we also found a distinct decrease in those biases since the mid-2000s. Given that there have been several waves of criticism from scientists both inside and outside invasion biology, our evidence suggests that the subdiscipline has somewhat self-corrected apparent biases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.